959 resultados para Single-grade classes
Resumo:
Tin monosulfide (SnS) films with varying distance between the source and substrate (DSS) were prepared by the thermal evaporation technique at a temperature of 300 degrees C to investigate the effect of the DSS on the physical properties. The physical properties of the as-deposited films are strongly influenced by the variation of DSS. The thickness, Sn to S at.% ratio, grain size, and root mean square (rms) roughness of the films decreased with the increase of DSS. The films grown at DSS = 10 and 15 cm exhibited nearly single-crystalline nature with low electrical resistivity. From Hall-effect measurements, it is observed that the films grown at DSS <= 15 cm have p-type conduction and the films grown at higher distances have n-type conduction due to the variation of the Sn/S ratio. The films grown at DSS = 15 cm showed higher optical band gap of 1.36 eV as compared with the films grown at other distances. The effect of the DSS on the physical properties of SnS films is discussed and reported.
Resumo:
A laboratory model of a thermally driven adsorption refrigeration system with activated carbon as the adsorbent and 1,1,1,2-tetrafluoroethane (HFC 134a) as the refrigerant was developed. The single stage compression system has an ensemble of four adsorbers packed with Maxsorb II specimen of activated carbon that provide a near continuous flow which caters to a cooling load of up to 5W in the 5-18 degrees C region. The objective was to utilise the low grade thermal energy to drive a refrigeration system that can be used to cool some critical electronic components. The laboratory model was tested for it performance at various cooling loads with the heat source temperature from 73 to 93 degrees C. The pressure transients during heating and cooling phases were traced. The cyclic steady state and transient performance data are presented. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Distributed space-time block codes (DSTBCs) from complex orthogonal designs (CODs) (both square and nonsquare), coordinate interleaved orthogonal designs (CIODs), and Clifford unitary weight designs (CUWDs) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using amplify and forward protocol. For such networks, in this paper, three new classes of high rate, training-symbol embedded (TSE) SSD DSTBCs are constructed: TSE-CODs, TSE-CIODs, and TSE-CUWDs. The proposed codes include the training symbols inside the structure of the code which is shown to be the key point to obtain the SSD property along with the channel estimation capability. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations and the constellations for which TSE-CIODs and TSE-CUWDs offer full-diversity are characterized. It is shown that DSTBCs from nonsquare TSE-CODs provide better rates (in symbols per channel use) when compared to the known SSD DSTBCs for relay networks. Important from the practical point of view, the proposed DSTBCs do not contain any zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on/off transitions within every codeword, and, thus, avoid the antenna switching problem.
Resumo:
Aminoacyl-tRNA synthetases (aaRS) catalyze the bimolecular association reaction between amino acid and tRNA by specifically and unerringly choosing the cognate amino acid and tRNA. There are two classes of such synthetases that perform tRNA-aminoacylation reaction. Interestingly, these two classes of aminoacyl-tRNA synthetases differ not only in their structures but they also exhibit remarkably distinct kinetics under pre-steady-state condition. The class I synthetases show initial burst of product formation followed by a slower steady-state rate. This has been argued to represent the influence of slow product release. In contrast, there is no burst in the case of class H enzymes. The tight binding of product with enzyme for class I enzymes is correlated with the enhancement of rate in presence of elongation factor. EF-TU. In spite of extensive experimental studies, there is no detailed theoretical analysis that can provide a quantitative understanding of this important problem. In this article, we present a theoretical investigation of enzyme kinetics for both classes of aminoacyl-tRNA synthetases. We present an augmented kinetic scheme and then employ the methods of time-dependent probability statistics to obtain expressions for the first passage time distribution that gives both the time-dependent and the steady-state rates. The present study quantitatively explains all the above experimental observations. We propose an alternative path way in the case of class II enzymes showing the tRNA-dependent amino acid activation and the discrepancy between the single-turnover and steady-state rate.
Resumo:
Este estudo parte das observações e análises realizadas em classes de aceleração do Projeto Acelerar para Vencer (PAV- 2009/2012), desenvolvido pela Secretaria de Educação de Minas Gerais, tendo a discussão sobre o fracasso escolar e a distorção idade-série como centrais dentro das políticas adotadas. A pesquisa busca ampliar nosso entendimento quanto à relação entre escola e expectativas individuais, levando-nos a refletir para além do direito à educação. Dentre as reflexões, destacamos: desigualdade de oportunidades, relações de poder dentro de um sistema que, de forma hegemônica, se mantém estável, mas desestabiliza vidas ao negar às camadas desprivilegiadas direitos básicos: acesso à alfabetização na idade certa, à leitura, ao conhecimento escolar e a uma educação atraente e de qualidade que atenda às necessidades dos sujeitos de acordo com as realidades em que estão inseridos. Certos de que tais problemas perpassam questões políticas, econômicas e sociais, pretendemos ater-nos às diferenças existentes dentro do espaço escolar, o que nos leva a tentar desvendar, - no sentido de não apenas repetir, mas também compreender -, as causas que levam à distorção idade-série e à sua inserção, ou disfarce, no processo de universalização do ensino, chegando à forma como a escola e seus agentes percebem as diferenças e lidam com ela. Para o desenvolvimento do estudo, recorremos à pesquisa qualitativa de cunho etnográfico, buscando subsídios em autores que discutem fracasso escolar, distorção idade-série, teoria curricular, mecanismos de exclusão social e respeito às diferenças culturais. Nesse sentido, concluímos que compreender as funcionalidades sociais da escola implica arregimentar, ou fazer coexistir, em um mesmo viés de observação, elementos interdependentes: política, escola, demandas sociais e cultura. Reconhecemos que tais elementos são imprescindíveis para pensarmos os sujeitos e suas distinções, a cultura e suas representações, o poder e as hegemonias presentes em todas as instâncias da vida escolar, transitando por uma via de mão dupla que envolve a enunciação das diferenças e seus atores: Secretaria de Educação, instituição pesquisada, gestão escolar, professores, alunos e responsáveis
Resumo:
Semi-insulating gallium arsenide single crystal grown in space has been used in fabricating low noise field effect transistors and analog switch integrated circuits by the direct ion-implantation technique. All key electrical properties of these transistors and integrated circuits have surpassed those made from conventional earth-grown gallium arsenide. This result shows that device-grade space-grown semiconducting single crystal has surpassed the best terrestrial counterparts. (C) 2001 American Institute of Physics.
Resumo:
High molecular weight dissolved organic matter (HMW-DOM, > 1000 Da) represents a major fraction (> 30%) of dissolved organic carbon (DOC) in the ocean and thus plays an important role in the global biogeochemical cycling of carbon and many other elements. Its organic sources and formation mechanisms, however, are still not well understood especially in estuarine and coastal regions where multiple natural and anthropogenic sources contribute to total HMW-DOM. In this paper we report our measurements of natural radiocarbon (C-14) abundances and stable carbon isotope (C-13) compositions of the major biochemical compound classes: amino acids, carbohydrates and lipids separated from eight HMW-DOM samples collected from five US estuaries as part of our on-going study of sources, distribution and transport of chromophoric dissolved organic matter (CDOM) in estuarine and coastal waters. Distinct differences in both C-14 and C-13 values were found among the bulk HMW-DOM samples as well as the individual compound classes. Radiocarbon ages of the major compound classes varied by as much as 27,000 years in a single sample. The calculated average radiocarbon ages of the compound fractions of HMW-DOM indicate that the total lipid fraction is very "old", while the acid-insoluble fraction is slightly younger. Total amino acid and carbohydrate fractions, however, have relatively modern apparent C-14 ages. The significant variability in C-14 ages among the compound classes indicates not only multiple organic carbon sources but also different formation and turnover pathways controlling the cycling of different biochemical components of HMW-DOM in estuarine and coastal waters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Anthropogenic pollutant chemicals pose a major threat to aquatic organisms. There is a need for more research on emerging categories of environmental chemicals such as nanomaterials, endocrine disruptors and pharmaceuticals. Proteomics offers options and advantages for early warning of alterations in environmental quality by detecting sub-lethal changes in sentinel species such as the mussel, Mytilus edulis. This thesis aimed to compare the potential of traditional biomarkers (such as enzyme activity measurement) and newer redox proteomic approaches. Environmental proteomics, especially a redox proteomics toolbox, may be a novel way to study pollutant effects on organisms which can also yield information on risks to human health. In particular, it can probe subtle biochemical changes at sub-lethal concentrations and thus offer novel insights to toxicity mechanisms. In the first instance, the present research involved a field-study in three stations in Cork Harbour, Ireland (Haulbowline, Ringaskiddy and Douglas) compared to an outharbour control site in Bantry Bay, Ireland. Then, further research was carried out to detect effects of anthropogenic pollution on selected chemicals. Diclofenac is an example of veterinary and human pharmaceuticals, an emerging category of chemical pollutants, with potential to cause serious toxicity to non-target organisms. A second chemical used for this study was copper which is a key source of contamination in marine ecosystems. Thirdly, bisphenol A is a major anthropogenic chemical mainly used in polycarbonate plastics manufacturing that is widespread in the environment. It is also suspected to be an endocrine disruptor. Effects on the gill, the principal feeding organ of mussels, were investigated in particular. Effects on digestive gland were also investigated to compare different outcomes from each tissue. Across the three anthropogenic chemicals studied (diclofenac, copper and bisphenol A), only diclofenac exposure did not show any significant difference towards glutathione transferase (GST) responses. Meanwhile, copper and bisphenol A significantly increased GST in gill. Glutathione reductase (GR) enzyme analysis revealed that all three chemicals have significant responses in gill. Catalase activity showed significant differences in digestive gland exposed to diclofenac and gills exposed to bisphenol A. This study focused then on application of redox proteomics; the study of the oxidative modification of proteins, to M. edulis. Thiol proteins were labelled with 5-iodoacetamidofluorescein prior to one-dimensional and two-dimensional electrophoresis. This clearly revealed some similarities on a portion of the redox proteome across chemical exposures indicating where toxicity mechanism may be common and where effects are unique to a single treatment. This thesis documents that proteomics is a robust tool to provide valuable insights into possible mechanisms of toxicity of anthropogenic contaminants in M. edulis. It is concluded that future research should focus on gill tissue, on protein thiols and on key individual proteins discovered in this study such as calreticulin and arginine kinase which have not previously been considered as biomarkers in aquatic toxicology prior to this study.
Resumo:
The variable start and duration of the Grey seal breeding season makes the estimation of total pup production from a single census very difficult. Classifying the count into morphological age classes enables the form and timing of the birth rate curve and estimates of pup mortality rates to be elucidated. A simulation technique is described which enables the duration of each morphological stage to be determined from a series of such classified counts taken over one season. A further statistical technique uses these estimates to calculate the mean timing and duration of the breeding season from a single classified count taken from similar populations in subsequent years. This information allows total pup production to be calculated for any appropriate breeding colony. Some guidance is given as to the optimal timing of that single census which would yield the best estimate of production, although the precise date is not critical to the success of the technique. Results from single census estimates obtained in this way are compared with known production data from more detailed surveys for a number of different colonies.
Resumo:
When operated with a metallic tip and sample the scanning tunnelling microscope constitutes a nanoscale, plasmonic light source yielding broadband emission up to a photon energy determined by the applied bias. The emission is due to tunnelling electron excitation and subsequent radiative decay of localized plasmon modes, which can be on the lateral scale of a single metal grain (similar to 25 nm) or less. For a Au-tip/Au-polycrystalline sample under ambient conditions it is found that the intensity and spectral content of the emitted light are not dependent on the lateral grain dimension, but are predominantly determined by the tip geometry. However, the intensity increases strongly with increasing film thickness (grain depth) up to 20-25 nm or approximately the skin depth of the Au film. Photon maps can show less emissive grains and two classes of this occurrence are distinguished. The first is geometrical in origin - a double-tip structure in this case - while the second is due to a contamination-induced lowering of the local work function that causes the tunnel gap to increase. It is suggested that differences in work-function lowering between grains presenting different crystalline facets, combined with an exponential decay in emitted light intensity with tip - sample distance, leads to grain contrast. These results are relevant to tip-enhanced Raman scattering and the fabrication of micro/nano-scale planar, light-emitting tunnel devices.
Resumo:
Knowledge of groundwater flow/mass transport, in poorly productive aquifers which underlie over 65% of the island of Ireland, is necessary for effective management of catchment water quality and aquatic ecology. This research focuses on a fractured low-grade Ordovician/Silurian greywacke sequence which underlies approximately 25% of the northern half of Ireland. Knowledge of the unit’s hydrogeological properties remain largely restricted to localised single well open hole “transmissivity” values. Current hydrogeological conceptual models of the Greywacke view the bulk of groundwater flowing through fractures in an otherwise impermeable bedrock mass.
Core analysis permits fracture characterisation, although not all identified fractures may be involved in groundwater flow. Traditional in-situ hydraulic characterisation relies on cumbersome techniques such as packer testing or geophysical borehole logging (e.g. flowmeters). Queen’s University Belfast is currently carrying out hydraulic characterization of 16 boreholes at its Greywacke Hydrogeological Research Site at Mount Stewart, Northern Ireland.
Development of dye dilution methods, using a recently-developed downhole fluorometer, provided a portable, user-friendly, and inexpensive means of detecting hydraulically active intervals in open boreholes. Measurements in a 55m deep hole, three days following fluorescent dye injection, demonstrated the ability of the technique to detect two discrete hydraulically active intervals corresponding to zones identified by caliper and heat-pulse flowmeter logs. High resolution acoustic televiewer logs revealed the zones to correspond to two steeply dipping fractured intervals. Results suggest the rock can have effective porosities of the order of 0.1%.
Study findings demonstrate dye dilution’s utility in characterizing groundwater flow in fractured aquifers. Tests on remaining holes will be completed at different times following injection to identify less permeable fractures and develop an improved understanding of the structural controls on groundwater flow in the uppermost metres of competent bedrock.
Resumo:
Single nucleotide polymorphisms (SNPs) are predicted to supersede microsatellites as the marker of choice for population genetic studies in the near future. To date, however, very few studies have directly compared both marker systems in natural populations, particularly in non-model organisms. In the present study, we compared the utility of SNPs and microsatellites for population genetic analysis of the red seaweed Chondrus crispus (Florideophyceae). Six SNP loci yielded very different patterns of intrapopulation genetic diversity compared to those obtained using seven moderately (mean 5.2 alleles) polymorphic microsatellite loci, although Bayesian clustering analysis gave largely congruent results between the two marker classes. A weak but significant pattern of isolation-by-distance was observed across scales from a few hundred metres to approximately 200?km using the combined SNP and microsatellite data set of 13 loci. Over larger scales, however, there was little correlation between genetic divergence and geographical distance. Our findings suggest that even a moderate number of SNPs is sufficient to determine patterns of genetic diversity across natural populations, and also highlight the fact that patterns of genetic variation in seaweeds arise through a complex interplay of short- and long-term natural processes, as well as anthropogenic influence.
Resumo:
In this work, a highly instrumented single screw extruder has been used to study the effect of polymer rheology on the thermal efficiency of the extrusion process. Three different molecular weight grades of high density polyethylene (HDPE) were extruded at a range of conditions. Three geometries of extruder screws were used at several set temperatures and screw rotation speeds. The extruder was equipped with real-time quantification of energy consumption; thermal dynamics of the process were examined using thermocouple grid sensors at the entrance to the die. Results showed that polymer rheology had a significant effect on process energy consumption and thermal homogeneity of the melt. Highest specific energy consumption and poorest homogeneity was observed for the highest viscosity grade of HDPE. Extruder screw geometry, set extrusion temperature and screw rotation speed were also found to have a direct effect on energy consumption and melt consistency. In particular, specific energy consumption was lower using a barrier flighted screw compared to single flighted screws at the same set conditions. These results highlight the complex nature of extrusion thermal dynamics and provide evidence that rheological properties of the polymer can significantly influence the thermal efficiency of the process.
Resumo:
Environmental contamination and climate changes constitute two of the most serious problems affecting soil ecosystems in agricultural fields. Agriculture is nowadays a highly optimized process that strongly relies on the application of multiple pesticides to reduce losses and increase yield production. Although constituting, per se, a serious problem to soil biota, pesticide mixtures can assume an even higher relevance in a context of unfavourable environmental conditions. Surprisingly, frameworks currently established for environmental risk assessments keep not considering environmental stressors, such as temperature, soil moisture or UV radiation, as factors liable to influence the susceptibility of organisms to pesticides, or pesticide mixtures, which is raising increasing apprehension regarding their adequacy to actually estimate the risks posed by these compounds to the environment. Albeit the higher attention received on the last few years, the influence of environmental stressors on the behaviour and toxicity of chemical mixtures remains still poorly understood. Aiming to contribute for this discussion, the main goal of the present thesis was to evaluate the single and joint effects of natural stressors and pesticides to the terrestrial isopod Porcellionides pruinosus. The first approach consisted on evaluating the effects of several abiotic factors (temperature, soil moisture and UV radiation) on the performance of P. pruinosus using several endpoints: survival, feeding parameters, locomotor activity and avoidance behaviour. Results showed that these stressors might indeed affect P. pruinosus at relevant environmental conditions, thus suggesting the relevance of their consideration in ecotoxicological assays. At next, a multiple biomarker approach was used to have a closer insight into the pathways of damage of UV radiation and a broad spectrum of processes showed to be involved (i.e. oxidative stress, neurotoxicity, energy). Furthermore, UV effects showed to vary with the environment medium and growth-stage. A similar biomarker approach was employed to assess the single and joint effects of the pesticides chlorpyrifos and mancozeb to P. pruinosus. Energy-related biomarkers showed to be the most differentiating parameters since age-classes seemed to respond differently to contamination stress and to have different metabolic costs associated. Finally, the influence of temperature and soil moisture on the toxicity of pesticide mixtures was evaluated using survival and feeding parameters as endpoints. Pesticide-induced mortality was found to be oppositely affected by temperature, either in single or mixture treatments. Whereas chlorpyrifos acute toxicity was raised under higher temperatures the toxicity of mancozeb was more prominent at lower temperatures. By the opposite, soil moisture showed no effects on the pesticide-induced mortality of isopods. Contrary to survival, both temperature and soil moisture showed to interact with pesticides to influence isopods’ feeding parameters. Nonetheless, was however the most common pattern. In brief, findings reported on this thesis demonstrated why the negligence of natural stressors, or multiple stressors in general, is not a good solution for risk assessment frameworks.