984 resultados para Single-crossing property
Resumo:
A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wildtype rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wildtype. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.
Resumo:
Large-sized CsI (Tl) single crystals, similar to phi 100 mm x 350 mm, have been grown successfully, and this CsI(Tl) coupled with PD has been successfully utilized at RIBLL (the Radioactive Ion Beam Line in Lanzhou) to measure the energy of heavy ions as a stopping detector. The performances of CsI(Tl) detector coupled with PD and APD have been tested and compared, including the temperature dependence of scintillating light yield
Resumo:
Influence of core property on multi-electron process in the collisions of q = 6-9 and 11 isocharged sequence ions with Ne is investigated in the keV/u region The cross-section ratios of double-, triple-, quadruple- and total multi-electron processes to the single electron capture process as well as the partial ratios of different reaction channels to the relevant multi-electron process are measured by using position-sensitive and time-of-flight techniques The experimental data are compared with the theoretical predictions including the extended classical over-barrier model, the molecular Columbic barrier model and the semi-empirical scaling law Results show a core effect on multi-electron process of isocharge ions colliding with Neon, which is consistent with the results of Helium we obtained previously
Resumo:
A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials.
Resumo:
In this contribution, we report a facile, gram-scale, low-cost route to prepare monodisperse superparamagnetic single-crystal magnetite NPs with mesoporous structure (MSSMN) via a very simple solvothermal method. The formation mechanism of MSSMN is also discussed and we think that Ostwald ripening probably plays an important role in this synthesis process. It is also interestingly found that the size and morphology of mesoporous Fe3O4 NPs can be easily controlled by changing the amount of NaOH and 1,2-ethylenediamine (ETH). Most importantly, the MSSMN can be used as an effective drug delivery carrier. A typical anticancer drug, doxorubicin (Dox), is used for drug loading, and the release behaviors of Dox in two different pH solutions are studied. The results indicate that the MSSMN has a high drug loading capacity and favorable release property for Dox; thus, it is very promising for the application in drug delivery.
Resumo:
Single-walled carbon nanotubes (SWNTs) can selectively induce human telomeric i-motif DNA formation at pH 7.0. Based on this property, we design a DNA nanomachine induced by SWNTs on gold surface. The motor DNA is human telomeric G-quadruplex DNA. The reversible hybridization between the motor DNA and its complementary human telomeric i-motif DNA can be modulated by SWNTs without changing solution pH. Up to now, to our knowledge, there is no report to show that a DNA nanomachine is induced by SWNTs or a DNA nanomachine can detect i-motif formation at pH 7.0. Our work may provide a new concept for designing an SWNT-induced DNA nanomachine and for the detection of i-motif DNA structure at pH 7.0. DNA hybridization, conformational transition and i-motif formation have been characterized on surface or in solution by fluorescence confocal microscopy, circular dichroism, DNA melting and gel electrophoresis. The folding and unfolding kinetics of the DNA nanomachine on gold surface were studied by Fourier transform-surface plasmon resonance (FT-SPR). All these results indicate that SWNTs can induce the DNA nanomachine to work efficiently and reversibly.
Resumo:
The pH-sensitive property of the single-wall carbon nanotube modified electrode based oil the electroactive group on the single-wall carbon nanotube was explored by differential pulse voltammetry technique. In pH range 1-13 investigated in Britton-Robinson (B-R) buffer, the anodic peak shifted negatively along with the increase of pH exhibiting a reversible Nernstian response. Experiments were carried out to investigate the response of the single-wall carbon nanotube (SWNT) modified electrode to analytes associated with pH change. The response behavior of the modified electrode to ammonia was studied as an example. The potential response could reach equilibrium within 5 min. The modified electrode had good operational stability. Voltammetric urease and acetylcholinesterase biosensors were constructed by immobilizing the enzymes with sol-get hybrid material. The maximum potential shift could reach 0.130 and 0.220V for urea and acetylthiocholine, respectively. The methods for preparing sensor and biosensor were simple and reproducible and the range of analytes could be extended to substrates of other hydrolyases and esterases.
Resumo:
A novel 3D supramolecular assembly constructed from decavanadate and caffeine building blocks, (NH4)(2)(C8H10N4O2)(4)[H4V10O28].2H(2)O (1), has been synthesized in aqueous solution and characterized by elemental analysis, IR, H-1 NMR, V-51 NMR, TG-DTA, and single crystal X-Ray diffraction. The compound 1 crystallizes in monoclinic system, space group P2(1)/n, a = 15.801(1) Angstrom, b = 12.914(1) Angstrom, c = 15.913(2) Angstrom, beta = 113.55degrees, V = 2976.4 (5) Angstrom(3), Z = 2, R = 0.0498 with 6818 reflections. Water molecules, ammonium ions, and caffeine act as "cement" linking the polyanions into 1D chain along the c-axis by hydrogen bonding. In compound 1, extensive hydrogen-bond contacts and strong pi-pi interactions lead to an ordered 3D supramolecular framework. TG-DTA curves indicate that the weight loss of the complex can be divided into three stages.
Resumo:
Chemical bond parameters and the linear and nonlinear optical (NLO) properties of all constituent chemical bonds in Li1-xHxIOx [x (the amount of hydrogen) = 0.0, 0.28, and 0.34] (LHIO) type complex crystals have been investigated from the chemical bond viewpoint, At the same time, the relationship between the crystal structure and its optical properties has been obtained, based on the calculated results of LiIO3, Li0.72H0.28IO3, and Li0.66H0.34IO3. The nonlinear optical properties of LHIO single crystals are found to be particularly sensitive to the H+ impurity concentration. (C) 1998 Academic Press.
Resumo:
Immobilization of protein molecules is a fundamental problem for scanning tunnelling microscopy (STM) measurements with high resolution. In this paper, an electrochemical method has been proved to be an effective way to fix native horseradish peroxidase (HRP) as well as inactivated HRP from electrolyte onto a highly oriented pyrolytic graphite (HOPG) surface. This preparation is suitable for both ex situ and in situ electrochemical STM (ECSTM) measurements. In situ STM has been successfully employed to observe totally different structures of HRP in three typical cases: (1) in situ ECSTM reveals an oval-shaped pattern for a single molecule in neutral buffer solution, which is in good agreement with the dimension determined as 6.2 x 4.3 x 1.2. nm(3) by ex situ STM for native HRP; (2) in situ ECSTM shows that the adsorbed HRP molecules on HOPG in a denatured environment exhibit swelling globes at the beginning and then change into a V-shaped pattern after 30 min; (3) in situ ECSTM reveals a black hole in every ellipsoidal sphere for inactivated HRP in strong alkali solution. The cyclic voltammetry results indicate that the adsorbed native HRP can directly catalyse the reduction of hydrogen peroxide, demonstrating that a direct electron transfer reduction occurred between the enzyme and HOPG electrode, whereas the corresponding cyclic voltammograms for denatured HRP and inactivated HRP adsorbed on HOPG electrodes indicate a lack of ability to catalyse H2O2 reduction, which confirms that the HRP molecules lost their biological activity. Obviously, electrochemical results powerfully support in situ STM observations.
Resumo:
This paper analyses the relation between exile and literature in Angelina Muñiz-Huberman’s work El canto del peregrino. In this collection of essays, the Spanish-Mexican writer, member of the second generation of Spanish Republican exiles in Mexico, outlines a poetics of exile. From the outset, the relation between exile and literature is presented in terms of identity: while defining exile as “literary form”, the book tends to prefer a metaphorical concept of exile over ‘merely’ historical or referential approaches to it. More in particular, this paper will examine how the author constructs an identity of ‘exiled writer’ based on the close association between exile and literature on the one hand, and on the view of exile as ‘home’ or ‘dwelling’, on the other hand. A second point of interest concerns the discursive impact of this literary and metaphorical concept of exile and the author’s personal experience. A brief analysis of the essayist’s discursive voice and her writing practice shows how Muñiz-Huberman gives shape to an intrinsically complex and paradoxical view on exile.
Resumo:
In this study, we establish a relation between the representation of space in Muñiz’s essays and the construction of the essayist’s complex identity which combines Spanish, Jewish and Mexican traits. We concentrate on Angelina Muñiz’s essays Las raíces y las ramas (1993) and El canto del peregrino (1999). Methodologically, we rely on Maingueneau’s concept of ‘scenography’, according to which the text stages its own situation of enunciation. Our starting point is the triple Spanish-Jewish-Mexican identity of the essayist. Our research question is about how the essayist deals with the space corresponding to respectively the Spanish and Mexican part of her identity. Secondly, we analyse the representation in the essays of a space corresponding to her Jewish roots. We find that Muñiz’s vision of space is not static; the essayist’s vision on space is dynamic, open, free and characterized by a constant free movement across national borders. Similar to the concept of space of the ‘diaspora’, her vision is constructed without the limitations imposed by national borderlines or geographical distances.
Resumo:
In this paper, an analysis of radio channel characteristics for single- and multiple-antenna bodyworn systems for use in body-to-body communications is presented. The work was based on an extensive measurement campaign conducted at 2.45 GHz representative of an indoor sweep and search scenario for fire and rescue personnel. Using maximum-likelihood estimation in conjunction with the Akaike information criterion (AIC), five candidate probability distributions were investigated and from these the kappa - mu distribution was found to best describe small-scale fading observed in the body-to-body channels. Additional channel parameters such as autocorrelation and the cross-correlation coefficient between fading signal envelopes were also analyzed. Low cross correlation and small differences in mean signal levels between potential dual-branch diversity receivers suggested that the prospect of successfully implementing diversity in this type application is extremely good. Moreover, using selection combination, maximal ratio, and equal gain combining, up to 8.69-dB diversity gain can be made available when four spatially separated antennas are used at the receiver. Additional improvements in the combined envelopes through lower level crossing rates and fade durations at low signal levels were also observed.
Resumo:
This paper presents the design of a novel single chip adaptive beamformer capable of performing 50 Gflops, (Giga-floating-point operations/second). The core processor is a QR array implemented on a fully efficient linear systolic architecture, derived using a mapping that allows individual processors for boundary and internal cell operations. In addition, the paper highlights a number of rapid design techniques that have been used to realise this system. These include an architecture synthesis tool for quickly developing the circuit architecture and the utilisation of a library of parameterisable silicon intellectual property (IP) cores, to rapidly develop detailed silicon designs.