976 resultados para Single frequency
Resumo:
The gain-switched, single frequency operation of an external cavity grating-coupled surface emitting laser with a wavelength tuning range of 100 nm was presented. The light in the grating section was coupled out of the laser at a specific angle to the surface of the device. Analysis showed that within the driving current range, lasing in the device only occurred when the external cavity was properly aligned.
Resumo:
An astigmatic scheme of a laser wavelength meter based on a single air-gap Fizeau interferometer is described. For a multimode laser, the accuracy in determining the center of gravity of a spectrum is within 1GHz. Two complementary testing techniques are proposed for the instrument. By using them, it was shown for the first time that, for this type of meters, a systematic error arises and increases with a decrease in the radiation-spectrum width. The effect is periodic in the lasing frequency and results from a weak beam that is brought about by a reflection from the front surface of the interferometer. Moreover, in the previously designed optical schemes, this effect is so strong that unambiguous determination of the wavelength of a single-frequency radiation is impossible. The use of an astigmatic scheme helps additionally attenuate the influence of the third beam, thus eliminating the ambiguity in the results and reducing the absolute error to a value of ±1.5 GHz.
Resumo:
Vertical-external-cavity surface-emitting lasers (VECSELs) have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multi-mode or single-frequency continuouswave operation, and on the other hand two-color as well as mode-locked emission. Particularly, the combination of semiconductor gain medium and external cavity provides a unique access to high-brightness output, a high beam quality and wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the achievable radiation wavelength, spanning a spectral range from the UV to the THz. In this work, recent advances in the field of VECSELs are summarized and the demonstration of self-mode-locking (SML) VECSELs with sub-ps pulses is highlighted. Thereby, we present studies which were not only performed for a quantum-well-based VECSEL, but also for a quantum-dot VECSEL.
Resumo:
The effect of coherent single frequency injection on two-section semiconductor lasers is studied numerically using a model based on a set of delay differential equations. The existence of bistability between different continuous-wave and nonstationary regimes of operation is demonstrated in the case of sufficiently large linewidth enhancement factors. © 2014 American Physical Society.
Resumo:
Progress on advanced active and passive photonic components that are required for high-speed optical communications over hollow-core photonic bandgap fiber at wavelengths around 2 μm is described in this paper. Single-frequency lasers capable of operating at 10 Gb/s and covering a wide spectral range are realized. A comparison is made between waveguide and surface normal photodiodes with the latter showing good sensitivity up to 15 Gb/s. Passive waveguides, 90° optical hybrids, and arrayed waveguide grating with 100-GHz channel spacing are demonstrated on a large spot-size waveguide platform. Finally, a strong electro-optic effect using the quantum confined Stark effect in strain-balanced multiple quantum wells is demonstrated and used in a Mach-Zehnder modulator capable of operating at 10 Gb/s.
Resumo:
The major drawback of Ka band, operating frequency of the AltiKa altimeter on board SARAL, is its sensitivity to atmospheric liquid water. Even light rain or heavy clouds can strongly attenuate the signal and distort the signal leading to erroneous geophysical parameters estimates. A good detection of the samples affected by atmospheric liquid water is crucial. As AltiKa operates at a single frequency, a new technique based on the detection by a Matching Pursuit algorithm of short scale variations of the slope of the echo waveform plateau has been developed and implemented prelaunch in the ground segment. As the parameterization of the detection algorithm was defined using Jason-1 data, the parameters were re-estimated during the cal-val phase, during which the algorithm was also updated. The measured sensor signal-to-noise ratio is significantly better than planned, the data loss due to attenuation by rain is significantly smaller than expected (<0.1%). For cycles 2 to 9, the flag detects about 9% of 1Hz data, 5.5% as rainy and 3.5 % as backscatter bloom (or sigma0 bloom). The results of the flagging process are compared to independent rain data from microwave radiometers to evaluate its performances in term of detection and false alarms.
Resumo:
Altough nowadays DMTA is one of the most used techniques to characterize polymers thermo-mechanical behaviour, it is only effective for small amplitude oscillatory tests and limited to a single frequency analysis (linear regime). In this thesis work a Fourier transform based experimental system has proven to give hint on structural and chemical changes in specimens during large amplitude oscillatory tests exploiting multi frequency spectral analysis turning out in a more sensitive tool than classical linear approach. The test campaign has been focused on three test typologies: Strain sweep tests, Damage investigation and temperature sweep tests.
Resumo:
Background: Adult-type hypolactasia, the physiological decline of lactase some time after weaning, was previously associated with the LCT -13910C>T polymorphism worldwide except in Africa. Lactase non-persistence is the most common phenotype in humans, except in northwestern Europe with its long history of pastoralism and milking. We had previously shown association of LCT -13910C>T polymorphism with adult-type hypolactasia in Brazilians; thus, we assessed its frequency among different Brazilian ethnic groups. Methods: We investigated the ethnicity-related frequency of this polymorphism in 567 Brazilians [mean age, 42.1 +/- 16.8 years; 157 (27.7%) men]; 399 (70.4%) White, 50 (8.8%) Black, 65 (11.5%) Brown, and 53 (9.3%) Japanese-Brazilian. DNA was extracted from leukocytes; LCT -13910C>T polymorphism was analyzed by PCR-restriction fragment length polymorphism. Results: Prevalence of the CC genotype associated with hypolactasia was similar (57%) among White and Brown groups; however, prevalence was higher among Blacks (80%) and those of Japanese descent (100%). Only 2 (4%) Blacks had TT genotype, and 8 (16%) had the CT genotype. Assuming an association between CC genotype and hypolactasia, and CT and TT genotypes with lactase persistence, 356 (62.8%) individuals had hypolactasia and 211 (37.2%) had lactase persistence. The White and Brown groups had the same hypolactasia prevalence (similar to 57%); nevertheless, was 80% among Black individuals and 100% among Japanese-Brazilians (P < 0.01). Conclusion: The lactase persistence allele, LCT -13910T, was found in about 43% of both White and Brown and 20% of the Black Brazilians, but was absent among all Japanese Brazilians studied.
Resumo:
We propose a single optical photon source for quantum cryptography based on the acoustoelectric effect. Surface acoustic waves (SAWs) propagating through a quasi-one-dimensional channel have been shown to produce packets of electrons that reside in the SAW minima and travel at the velocity of sound. In our scheme, the electron packets are injected into a p-type region, resulting in photon emission. Since the number of electrons in each packet can be controlled down to a single electron, a stream of single- (or N-) photon states, with a creation time strongly correlated with the driving acoustic field, should be generated.
Resumo:
QUESTIONS UNDER STUDY: the main purpose of this longitudinal study was to determine the impact of risky single occasion drinking (RSOD) frequency on alcohol dependence and drinking consequences reported 15 months later. METHODS: As a baseline sample, 5,990 young men were assessed on their drinking habits including the frequency of RSOD. Of them, 5,196 were reassessed at follow-up 15 months later on RSOD frequency, alcohol dependence and alcohol related consequences in thze interceding year. Drop out biases were investigated. RESULTS: Around 45% of the baseline participants reported regular RSOD (every month or more frequently). Despite the fact that RSOD distribution was generally stable during the initial sample, 47.4% reported a variation of their RSOD frequency 15 months later. Around 25% of the sample reported reduced RSOD frequency. Nonetheless, occasional RS drinkers were more likely to become regular (monthly) RSO drinkers at follow up. Daily and weekly RSOD were associated with high proportions of alcohol dependence and detrimental consequences of drinking. Surprisingly, abstainers at baseline were more likely to be at risk of alcohol dependence and consequences at follow up than non-RSO drinkers. CONCLUSIONS: Despite the fact that alcohol abstinence is logically the best way to avoid the detrimental consequences of alcohol drinking, abstainers at baseline reported as many problems due to alcohol use at follow up as occasional or monthly RSO drinkers. The few participants who had become RSO drinkers during the follow up period were indeed likely to engage in detrimental behaviour. Non-RSO drinkers had the fewest problems due to alcohol use. This substantiates the early occurrence of drinking consequences among inexperienced RSO drinkers.
Resumo:
In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.
Resumo:
A novel dual frequency dual-polarized square microstrip patch antenna embedded with a slot is presented. The proposed antenna offers tunability of the frequency ratio between the two frequencies by adjusting the slot dimensions. This configuration also provides a size reduction up to -51 and 35% for the two modes as compared to a square micro strip patch antenna
Resumo:
Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.
Resumo:
A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.
Resumo:
This paper proposes to use a state-space technique to represent a frequency dependent line for simulating electromagnetic transients directly in time domain. The distributed nature of the line is represented by a multiple 1t section network made up of the lumped parameters and the frequency dependence of the per unit longitudinal parameters is matched by using a rational function. The rational function is represented by its equivalent circuit with passive elements. This passive circuit is then inserted in each 1t circuit of the cascade that represents the line. Because the system is very sparse, it is possible to use a sparsity technique to store only nonzero elements of this matrix for saving space and running time. The model was used to simulate the energization process of a 10 km length single-phase line. ©2008 IEEE.