534 resultados para Silk.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eri silk produced by Philosamia cynthia ricini silkworm is a fibre not well-known to the silk industry, in spite of the fact that Eri silk is finer, softer, and has better mechanical and thermal properties than most animal fibres. Eri silk has a high commercial potential, as the host plants of Eri silk worms are widespread in diverse geographical locations, and the worms also have a higher degree of disease resistance than most other silk worms. Mills are often not aware of the properties of Eri for designing appropriate end products. Thus, Eri silk yarn is traditionally produced by hand spinning, and Eri silk usually ends up as material for handwoven shawls. The potential for bulk fibre processing and the development of soft luxurious novel Eri silk products is yet to be discovered. To better understand the material and its processing behaviour, Eri silk was characterised and cocoons were processed into tops through degumming, opening, and cutting filaments into different lengths, followed by a worsted spun silk processing route. Fibre properties such as fineness, crimp, strength and length at different processing stages up to combed tops were measured. The results indicate that staple Eri silk can be processed via the worsted topmaking route, using a cut length of 200 mm or 150 mm for filament sheets prepared from degummed cocoons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Choreographer Kim Vincs and Scenographer Matthew Delbridge worked with dancer, Carlee Mellow, musicians Rob Vincs, Scott Dunbabin and Eugene Ughetti to create a virtual visual performance where performer's movement was rendered using a motion capture system and projected onto translucent screens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of maternity waiting homes (MWH) has a long history spanning over 100 years. The research reported here was conducted in the Thateng District of Sekong Province in southern Lao People’s Democratic Republic (PDR) to establish whether the MWH concept would be affordable, accessible, and most importantly acceptable, as a strategy to improve maternal outcomes in the remote communities of Thateng with a high proportion of the population from ethnic minority groups. The research suggested that there were major barriers to minority ethnic groups using existing maternal health services (reflected in very low usage of trained birth attendants and hospitals and clinics) in Thateng. Unless MWH are adapted to overcome these potential barriers, such initiatives will suffer the same fate as existing maternal facilities. Consequently, the Lao iteration of the concept, as operationalized in the Silk Homes project in southern Lao PDR is unique in combining maternal and infant health services with opportunities for micro credit and income generating activities and allowing non-harmful traditional practices to co-exist alongside modern medical protocols. These innovative approaches to the MWH concept address the major economic, social and cultural barriers to usage of safe birthing options in remote communities of southern Lao PDR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroin protein derived from silk fibres has been extensively studied with exciting outcomes for a number of potential advanced biomaterial applications. However, one of the major challenges in applications lies in engineering fibroin into a  desired form using a convenient production technology. In this paper, fabrication of ultrafine powder from eri silk is reported. The silk cocoons were degummed and the extracted silk fibres were then chopped into snippets prior to attritor and air jet milling. Effects of process control agents, material load and material to water ratio during attritor milling were studied. Compared to dry and dry–wet attritor milling, wet process emerged as the preferred option as it caused less colour change and facilitated easy handling. Ultrafine silk powder with a volume based particle size d(0.5) of around 700 nm could be prepared following the sequence of chopping ➔ wet attritor milling ➔ spray drying ➔ air jet milling. Unlike most reported powder production methods, this method could fabricate silk particles in a short time without any pre-treatment on degummed fibre. Moreover, the size range obtained is much smaller than that previously produced using standard milling devices. Reduction in fibre tenacity either shortened the milling time even further or helped bypassing media milling to produce fine powder directly through jet milling. However, such reduction in fibre strength did not help in increasing the ultimate particle fineness. The study also revealed that particle density and particle morphology could be manipulated through appropriate changes in the degumming process.

Graphical Abstract:  Fabrication of eri silk powder using attritor and jet milling is reported. Volume based particle size d(0.5) of around 700 nm could be prepared following the sequence chopping ➔ wet attritor milling ➔ spray drying ➔ air jet milling. No pre-treatments were used and the particle size range obtained is much smaller than that previously produced using standard milling devices. Particle density morphology could be manipulated through appropriate changes of cocoon degumming conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic perforations of the eardrum or tympanic membrane represent a significant source of morbidity worldwide. Myringoplasty is the operative repair of a perforated tympanic membrane and is a procedure commonly performed by otolaryngologists. Its purpose is to close the tympanic membrane, improve hearing and limit patient susceptibility to middle ear infections. The success rates of the different surgical techniques used to perform a myringoplasty, and the optimal graft materials to achieve complete closure and restore hearing, vary significantly in the literature. A number of autologous tissues, homografts and synthetic materials are described as graft options. With the advent and development of tissue engineering in the last decade, a number of biomaterials have been studied and attempts have been made to mimic biological functions with these materials. Fibroin, a core structural protein in silk from silkworms, has been widely studied with biomedical applications in mind. Several cell types, including keratinocytes, have grown on silk biomaterials, and scaffolds manufactured from silk have successfully been used in wound healing and for tissue engineering purposes. This review focuses on the current available grafts for myringoplasty and their limitations, and examines the biomechanical properties of silk, assessing the potential benefits of a silk fibroin scaffold as a novel device for use as a graft in myringoplasty surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research developed a milling technology for ultrafine silk particles and designed novel biocompatible and biodegradable silk composites for repairing hard tissue defects. It also demonstrated high and rapid reversible ion binding properties of silk particles and thereby opened up their application opportunities as advanced green sorbents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surgical treatment to repair chronic tympanic membrane perforations is myringoplasty. Although multiple autologous grafts, allografts, and synthetic graft materials have been used over the years, no single graft material is superior for repairing all perforation types. Recently, the remarkable properties of silk fibroin protein have been studied, with biomedical and tissue engineering applications in mind, across a number of medical and surgical disciplines. The present study examines the use of silk fibroin for its potential suitability as an alternative graft in myringoplasty surgery by investigating the growth and proliferation of human tympanic membrane keratinocytes on a silk fibroin scaffold in vitro. Light microscopy, immunofluorescent staining, and confocal imaging all reveal promising preliminary results. The biocompatibility, transparency, stability, high tensile strength, and biodegradability of fibroin make this biomaterial an attractive option to study for this utility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin is a useful protein polymer for biomaterials and tissue engineering. In this work, porogen leached scaffolds prepared from aqueous and HFIP silk solutions were reinforced through the addition of silk particles. This led to about 40 times increase in the specific compressive modulus and the yield strength of HFIP-based scaffolds. This increase in mechanical properties resulted from the high interfacial cohesion between the silk matrix and the reinforcing silk particles, due to partial solubility of the silk particles in HFIP. The porosity of scaffolds was reduced from ≈90% (control) to ≈75% for the HFIP systems containing 200% particle reinforcement, while maintaining pore interconnectivity. The presence of the particles slowed the enzymatic degradation of silk scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk is a structural protein fiber that is stable over a wide pH range making it attractive for use in medical and environmental applications. Variation in amino acid composition has the potential for selective binding for ions under varying conditions. Here we report on the metal ion separation potential of Mulberry and Eri silk fibers and powders over a range of pH. Highly sensitive radiotracer probes, 64Cu2+, 109Cd2+, and 57Co2+ were used to study the absorption of their respective stable metal ions Cu2+, Cd2+, and Co2+ into and from the silk sorbents. The total amount of each metal ion absorbed and time taken to reach equilibrium occurred in the following order: Cu2+ > Cd2+ > Co 2+. In all cases the silk powders absorbed metal ions faster than their respective silk fibers. Intensive degumming of the fibers and powders significantly reduced the time to absorb respective metal ions and the time to reach equilibrium was reduced from hours to 5-15 min at pH 8. Once bound, 45-100% of the metal ions were released from the sorbents after exposure to pH 3 buffer for 30 min. The transition metal ion loading capacity for the silk sorbents was considerably higher than that found for commercial ion exchange resins (AG MP-50 and AG 50W-X2) under similar conditions. Interestingly, total Cu2+ bound was found to be higher than theoretically predicted values based on known specific Cu2+ binding sites (AHGGYSGY), suggesting that additional (new) sites for transition metal ion binding sites are present in silk fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous three-dimensional (3-D) silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (non-reinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to 6 weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microcomputer tomography (μCT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per μg of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1, and 1:2, respectively. In addition, μCT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for non-reinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3-D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin films are promising materials for a range of biomedical applications. To understand the effects of casting solvents on film properties, we used water (W), formic acid (FA), and trifluoroacetic acid (TFA) as solvents. We characterized molecular weight, secondary structure, mechanical properties, and degradation behavior of cast films. Significant degradation of fibroin was observed for TFA-based film compared to W and TA-based films when analyzed by SDS-PAGE. Fibroin degradation resulted in a significant reduction in tensile strength and modulus of TFA-based films. Compared to water, TFA-based films demonstrated lower water solubility (19.6% vs. 62.5% in 12 h) despite having only a marginal increase in their ß-sheet content (26.9% vs. 23.7%). On the other hand, FA-based films with 34.3% ß-sheet were virtually water insoluble. Following solubility treatment, ß-sheet content in FA-based films increased to 50.9%. On exposure to protease XIV, water-annealed FA-based films lost 74% mass in 22 days compared to only 30% mass loss by ethanol annealed FA films. This study demonstrated that a small variation in the ß-sheet percentage and random coil conformations resulted in a significant change in the rates of enzymatic degradation without alteration to their tensile properties. The film surface roughness changed with the extent of enzymatic hydrolysis.