876 resultados para Silage - Starch and temperature monitoring
Resumo:
Adequate blood supply and sufficient mechanical stability are necessary for timely fracture healing. Damage to vessels impairs blood supply; hindering the transport of oxygen which is an essential metabolite for cells involved in repair. The degree of mechanical stability determines the mechanical conditions in the healing tissues. The mechanical conditions can influence tissue differentiation and may also inhibit revascularization. Knowledge of the actual conditions in a healing fracture in vivo is extremely limited. This study aimed to quantify the pressure, oxygen tension and temperature in the external callus during the early phase of bone healing. Six Merino-mix sheep underwent a tibial osteotomy. The tibia was stabilized with a standard mono-lateral external fixator. A multi-parameter catheter was placed adjacent to the osteotomy gap on the medial aspect of the tibia. Measurements of oxygen tension and temperature were performed for ten days post-op. Measurements of pressure were performed during gait on days three and seven. The ground reaction force and the interfragmentary movements were measured simultaneously. The maximum pressure during gait increased (p=0.028) from three (41.3 [29.2-44.1] mm Hg) to seven days (71.8 [61.8-84.8] mm Hg). During the same interval, there was no change (p=0.92) in the peak ground reaction force or in the interfragmentary movement (compression: p=0.59 and axial rotation: p=0.11). Oxygen tension in the haematoma (74.1 mm Hg [68.6-78.5]) was initially high post-op and decreased steadily over the first five days. The temperature increased over the first four days before reaching a plateau at approximately 38.5 degrees C on day four. This study is the first to report pressure, oxygen tension and temperature in the early callus tissues. The magnitude of pressure increased even though weight bearing and IFM remained unchanged. Oxygen tensions were initially high in the haematoma and fell gradually with a low oxygen environment first established after four to five days. This study illustrates that in bone healing the local environment for cells may not be considered constant with regard to oxygen tension, pressure and temperature.
Resumo:
Stimulated human whole saliva (WS) was used to study the dynamics of papain hydrolysis at defined pH, ionic strength and temperature with the view of reducing an acquired pellicle. A quartz crystal microbalance with dissipation (QCM-D) was used to monitor the changes in frequency due to enzyme hydrolysis of WS films and the hydrolytic parameters were calculated using an empirical model. The morphological and conformational changes of the salivary films before and after enzymatic hydrolysis were characterized by atomic force microscopy (AFM) imaging and grazing angle infrared spectroscopy (GA-FTIR) spectra, respectively. The characteristics of papain hydrolysis of WS films were pH-, ionic strength- and temperature-dependent. The WS films were partially removed by the action of enzyme, resulting thinner and smoother surfaces. The IR data suggested that hydrolysis-induced deformation did not occur onto the remnants salivary films. The processes of papain hydrolysis of WS films can be controlled by properly regulating pH, ionic strength and temperature.
Resumo:
Photocatalytic water splitting is a process which could potentially lead to commercially viable solar hydrogen production. This thesis uses an engineering perspective to investigate the technology. The effect of light intensity and temperature on photocatalytic water splitting was examined to evaluate the prospect of using solar concentration to increase the feasibility of the process. P25 TiO2 films deposited on conducting glass were used as photocatalyst electrodes and coupled with platinum electrodes which were also deposited on conducting glass. These films were used to form a photocatalysis cell and illuminated with a Xenon arc lamp to simulate solar light at intensities up to 50 suns. They were also tested at temperatures between 20°C and 100°C. The reaction demonstrated a sub-linear relationship with intensity. Photocurrent was proportional to intensity with an exponential value of 0.627. Increasing temperature resulted in an exponential relationship. This proved to follow an Arrhenius relationship with an activation energy of 10.3 kJ mol-1 and a pre-exponential factor of approximately 8.7×103. These results then formed the basis of a mathematical model which extrapolated beyond the range of the experimental tests. This model shows that the loss of efficiency from performing the reaction under high light intensity is offset by the increased reaction rate and efficiency from the associated temperature increase. This is an important finding for photocatalytic water splitting. It will direct future research in system design and materials research and may provide an avenue for the commercialisation of this technology.
Resumo:
The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.
Resumo:
Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.
Resumo:
We investigate, using scanning tunnelling microscopy, the adsorption of pentacene on Ni(111) at room temperature and the behaviour of these monolayer films with annealing up to 700 °C. We observe the conversion of pentacene into graphene, which begins from as low as 220 °C with the coalescence of pentacene molecules into large planar aggregates. Then, by annealing at 350 °C for 20 minutes, these aggregates expand into irregular domains of graphene tens of nanometers in size. On surfaces where graphene and nickel carbide coexist, pentacene shows preferential adsorption on the nickel carbide phase. The same pentacene to graphene transformation was also achieved on Cu(111), but at a higher activation temperature, producing large graphene domains that exhibit a range of moiré superlattice periodicities.
Resumo:
Resolving species relationships and confirming diagnostic morphological characters for insect clades that are highly plastic, and/or include morphologically cryptic species, is crucial for both academic and applied reasons. Within the true fly (Diptera) family Chironomidae, a most ubiquitous freshwater insect group, the genera CricotopusWulp, 1874 and ParatrichocladiusSantos-Abreu, 1918 have long been taxonomically confusing. Indeed, until recently the Australian fauna had been examined in just two unpublished theses: most species were known by informal manuscript names only, with no concept of relationships. Understanding species limits, and the associated ecology and evolution, is essential to address taxonomic sufficiency in biomonitoring surveys. Immature stages are collected routinely, but tolerance is generalized at the genus level, despite marked variation among species. Here, we explored this issue using a multilocus molecular phylogenetic approach, including the standard mitochondrial barcode region, and tested explicitly for phylogenetic signal in ecological tolerance of species. Additionally, we addressed biogeographical patterns by conducting Bayesian divergence time estimation. We sampled all but one of the now recognized Australian Cricotopus species and tested monophyly using representatives from other austral and Asian locations. Cricotopus is revealed as paraphyletic by the inclusion of a nested monophyletic Paratrichocladius, with in-group diversification beginning in the Eocene. Previous morphological species concepts are largely corroborated, but some additional cryptic diversity is revealed. No significant relationship was observed between the phylogenetic position of a species and its ecology, implying either that tolerance to deleterious environmental impacts is a convergent trait among many Cricotopus species or that sensitive and restricted taxa have diversified into more narrow niches from a widely tolerant ancestor.
Resumo:
Disclosed are methods for detecting the presence of a carcinoma or an increased likelihood that a carcinoma is present in a subject. More particularly, the present invention discloses methods for diagnosis, screening, treatment and monitoring of carcinomas associated with aberrant DNA methylation of the MED15 promoter region
Resumo:
Electrical resistivity of bulk amorphous Al23T77 samples has been studied as a function of pressure (up to 80 kbar) and temperature (down to 77 K). At atmospheric pressure the temperature dependence of resistivity obeys the relation = π0 exp(δE/RT) with two activation energies. In the temperature range 300 K T > 234 K the activation energy is 0.58 eV and for 234 >T 185 K the value is δE = 0.30 ev. The activation energy has been measured as a function of pressure. The electrical resistivity decreases exponentially with the increase of pressure and at 70 kbar pressure the electrical behaviour of the sample shows a metallic nature with a positive temperature coefficient. The high pressure phase of the sample is found to be a crystalline hexagonal phase.
Resumo:
To investigate the effects of soil type on seed persistence in a manner that controlled for location and climate variables, three weed species—Gomphocarpus physocarpus (swan plant), Avena sterilis ssp. ludoviciana (wild oat) and Ligustrum lucidum (broadleaf privet)—were buried for 21 months in three contrasting soils at a single location. Soil type had a significant effect on seed persistence and seedling vigour, but soil water content and temperature varied between soils due to differences in physical and chemical properties. Warmer, wetter conditions favoured shorter persistence. A laboratory-based test was developed to accelerate the rate of seed ageing within soils, using controlled superoptimal temperature and moisture conditions (the soil-specific accelerated ageing test, SSAAT). The SSAAT demonstrated that soil type per se did not influence seed longevity. Moreover, the order in which seeds aged was the same whether aged in the field or SSAAT, with L. lucidum being shortest-lived and A. sterilis being longest-lived of the three species.
Resumo:
A randomly interrupted strand model of a one-dimensional conductor is considered. An exact analytical expression is obtained for the temperature-dependent ac mobility for a finite segment drawn at random, taking into account the reflecting barriers at the two open ends. The real part of mobility shows a broad resonance as a function of both frequency and temperature, and vanishes quadratically in the dc limit. The frequency (temperature) maximum shifts to higher values for higher temperatures (frequencies).