951 resultados para Shoot pruning
Resumo:
Improving plant quality and the uniformity of a crop are major objectives for growers of ornamental nursery stock. The potential to control excess vigour and to improve quality through regulated deficit irrigation (RDI) was investigated using a range of woody ornamental species. RDI regimes reduced vegetative growth consistently across different species and growing seasons. Plants adapted to reduced water supplies primarily via stomatal control, but also by osmotic adjustment when grown under the most severe RDI regimes. Only plants exposed to <= 25% of potential evapo-transpiration demonstrated any evidence of leaf injury, and the extent was slight. Growth inhibition increased as the severity of RDI increased. Improvements in quality were attained through a combination of shorter internodes and final shoot lengths, yet the number of 'formative' primary shoots remained unaffected. Compact, well-branched plants could be formed without a requirement for mid-season pruning. In addition to severity, the timing of RDI also influenced growth responses. Applying 50% ETp for 8 weeks during July-August resulted in the formation of good quality plants, which retained their shape until the following Spring. Re-positioning irrigation drippers within the pots of well-watered plants, in an attempt to induce a partial root drying (PRD) treatment, reduced growth, but not significantly. The adoption of irrigation scheduling, based on 50-100% ETp, has the potential to improve commercial crop quality across a range of ornamental species.
Resumo:
Cocoa farms that had been treated and replanted in Ghana during the most recent phase of the cocoa swollen shoot virus (CSSV) eradication campaign were surveyed. Farms that were replanted close to adjoining old cocoa farms or which contained old trees were common in most (38) of the 41 cocoa farms surveyed. CSSV infections were apparent in 20 (53%) out of these 38 farms and they pose a serious risk of causing early infections of the re-planted farms. Control strategies that isolate the newly planted farms by a boundary of immune crops as barriers to reduce CSSV re-infection are discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
To investigate flower induction in June-bearing strawberry plants, morphological changes in shoot apices and Historic H4 expression in the central zone during flower initiation were observed. Strawberry plants were placed under flower inducible, short-day conditions (23 degrees C/17 degrees C, 10 h day length) for differing number of days (8, 16, 20, 24 or 32 days) and then these plants were transferred to non-inducible, long-day conditions (25 degrees C/20 degrees C, 14 h day length). The shoot apices of plants placed under short-day conditions for 8 days were flat, similar to shoot apices of plants in the vegetative phase of development, and Histone H4 was not expressed in the central zone during the experimental period. On the other hand, the shoot apices of plants placed under short-day conditions for 16 days remained flat, similar to shoot apices of plants placed under short-day conditions for 8 days, but Histone H4 was expressed in the central zone at the end of the short-day treatment. Morphological changes in the shoot apices of these plants were observed 8 days after the change in day-length. These plants developed differentiated flower organs after they were grown for another 30 days under long-day conditions. These results indicate that changes in the expression pattern of the Histone H4 gene occur before morphological changes during flower induction and that the expression of the gene in the central zone can be used as one of the indicators of the flowering process in strawberries. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this review we describe how concepts of shoot apical meristem function have developed over time. The role of the scientist is emphasized, as proposer, receiver and evaluator of ideas about the shoot apical meristem. Models have become increasingly popular over the last 250 years, and we consider their role. They provide valuable grounding for the development of hypotheses, but in addition they have a strong human element and their uptake relies on various degrees of persuasion. The most influential models are probably those that most data support, consolidating them as an insight into reality; but they also work by altering how we see meristems, re-directing us to influence the data we collect and the questions we consider meaningful.
Resumo:
This paper deals with the design of optimal multiple gravity assist trajectories with deep space manoeuvres. A pruning method which considers the sequential nature of the problem is presented. The method locates feasible vectors using local optimization and applies a clustering algorithm to find reduced bounding boxes which can be used in a subsequent optimization step. Since multiple local minima remain within the pruned search space, the use of a global optimization method, such as Differential Evolution, is suggested for finding solutions which are likely to be close to the global optimum. Two case studies are presented.
Resumo:
We introduce and describe the Multiple Gravity Assist problem, a global optimisation problem that is of great interest in the design of spacecraft and their trajectories. We discuss its formalization and we show, in one particular problem instance, the performance of selected state of the art heuristic global optimisation algorithms. A deterministic search space pruning algorithm is then developed and its polynomial time and space complexity derived. The algorithm is shown to achieve search space reductions of greater than six orders of magnitude, thus reducing significantly the complexity of the subsequent optimisation.
Resumo:
A fast backward elimination algorithm is introduced based on a QR decomposition and Givens transformations to prune radial-basis-function networks. Nodes are sequentially removed using an increment of error variance criterion. The procedure is terminated by using a prediction risk criterion so as to obtain a model structure with good generalisation properties. The algorithm can be used to postprocess radial basis centres selected using a k-means routine and, in this mode, it provides a hybrid supervised centre selection approach.
Resumo:
Analyzes the use of linear and neural network models for financial distress classification, with emphasis on the issues of input variable selection and model pruning. A data-driven method for selecting input variables (financial ratios, in this case) is proposed. A case study involving 60 British firms in the period 1997-2000 is used for illustration. It is shown that the use of the Optimal Brain Damage pruning technique can considerably improve the generalization ability of a neural model. Moreover, the set of financial ratios obtained with the proposed selection procedure is shown to be an appropriate alternative to the ratios usually employed by practitioners.
Resumo:
The distribution of nutrients and assimilates in different organs and tissues is in a constant state of flux throughout the growth and development of a plant. At key stages during the life cycle profound changes occur, and perhaps one of the most critical of these is during seed filling. By restricting the competition for reserves in Arabidopsis plants, the ability to manipulate seed size, seed weight, or seed content has been explored. Removal of secondary inflorescences and lateral branches resulted in a stimulation of elongation of the primary inflorescence and an increase in the distance between siliques. The pruning treatment also led to the development of longer and larger siliques that contained fewer, bigger seeds. This seems to be a consequence of a reduction in the number of ovules that develop and an increase in the fatty acid content of the seeds that mature. The data show that shoot architecture could have a substantial impact on the partitioning of reserves between vegetative and reproductive tissues and could be an important trait for selection in rapid phenotyping screens to optimize crop performance.
Resumo:
DNA- and RNA-based polymerase chain reaction (PCR) systems were used with Cacao swollen shoot virus (CSSV) primers designed from conserved regions of the six published genomic sequences of CSSV to investigate whether the virus is transmissible from infected trees through cross-pollination to seeds and seedlings. Pollen was harvested from CSSV infected cocoa trees and used to cross-pollinate flowers of healthy cocoa trees (recipient parents) to generate enough cocoa seeds for the PCR screening. Adequate precautions were taken to avoid cross-contamination during duplicated DNA extractions and only PCR results accompanied by effective positive and negative controls were scored. Results from the PCR analyses showed that samples of cocoa pod husk, mesocarp and seed tissues (testa, cotyledon and embryo) from the cross-pollinations were PCR negative for CSSV DNA. Sequential DNA samples from new leaves of seedlings resulting from the cross-pollinated trees were consistently PCR negative for presence of portions of CSSV DNA for over 36 months after germination. A reverse transcription-PCR analysis performed on the seedlings showed negative results, indicating absence of functional CSSV RNA transcripts in the seedlings. None of the seedlings exhibited symptoms characteristic of the CSSV disease, and all infectivity tests on the seedlings were also negative. Following these results, the study concluded that although CSSV DNA was detected in pollen from CSSV infected trees, there was no evidence of pollen transmission of the virus through cross-pollination from infected cocoa parents to healthy cocoa trees. Keywords:badnavirus;CSSV;PCR;pollen;seed transmission;Theobroma cacao
Resumo:
In a world where data is captured on a large scale the major challenge for data mining algorithms is to be able to scale up to large datasets. There are two main approaches to inducing classification rules, one is the divide and conquer approach, also known as the top down induction of decision trees; the other approach is called the separate and conquer approach. A considerable amount of work has been done on scaling up the divide and conquer approach. However, very little work has been conducted on scaling up the separate and conquer approach.In this work we describe a parallel framework that allows the parallelisation of a certain family of separate and conquer algorithms, the Prism family. Parallelisation helps the Prism family of algorithms to harvest additional computer resources in a network of computers in order to make the induction of classification rules scale better on large datasets. Our framework also incorporates a pre-pruning facility for parallel Prism algorithms.
Resumo:
The Prism family of algorithms induces modular classification rules which, in contrast to decision tree induction algorithms, do not necessarily fit together into a decision tree structure. Classifiers induced by Prism algorithms achieve a comparable accuracy compared with decision trees and in some cases even outperform decision trees. Both kinds of algorithms tend to overfit on large and noisy datasets and this has led to the development of pruning methods. Pruning methods use various metrics to truncate decision trees or to eliminate whole rules or single rule terms from a Prism rule set. For decision trees many pre-pruning and postpruning methods exist, however for Prism algorithms only one pre-pruning method has been developed, J-pruning. Recent work with Prism algorithms examined J-pruning in the context of very large datasets and found that the current method does not use its full potential. This paper revisits the J-pruning method for the Prism family of algorithms and develops a new pruning method Jmax-pruning, discusses it in theoretical terms and evaluates it empirically.