962 resultados para Sex determination, Genetic.
Resumo:
In sharp contrast with birds and mammals, sex-determination systems in ectothermic vertebrates are often highly dynamic and sometimes multifactorial. Both environmental and genetic effects have been documented in common frogs (Rana temporaria). One genetic linkage group, mapping to the largest pair of chromosomes and harbouring the candidate sex-determining gene Dmrt1, associates with sex in several populations throughout Europe, but association varies both within and among populations. Here, we show that sex association at this linkage group differs among populations along a 1500-km transect across Sweden. Genetic differentiation between sexes is strongest (FST = 0.152) in a northern-boreal population, where male-specific alleles and heterozygote excesses (FIS = -0.418 in males, +0.025 in females) testify to a male-heterogametic system and lack of X-Y recombination. In the southernmost population (nemoral climate), in contrast, sexes share the same alleles at the same frequencies (FST = 0.007 between sexes), suggesting unrestricted recombination. Other populations show intermediate levels of sex differentiation, with males falling in two categories: some cluster with females, while others display male-specific Y haplotypes. This polymorphism may result from differences between populations in the patterns of X-Y recombination, co-option of an alternative sex-chromosome pair, or a mixed sex-determination system where maleness is controlled either by genes or by environment depending on populations or families. We propose approaches to test among these alternative models, to disentangle the effects of climate and phylogeography on the latitudinal trend, and to sort out how this polymorphism relates to the 'sexual races' described in common frogs in the 1930s.
Resumo:
When sex determination in a species is predominantly genetic but environmentally reversible, exposure to (anthropogenic) changes in the environment can lead to shifts in a population's sex ratio. Such scenarios may be common in many fishes and amphibians, yet their ramifications remain largely unexplored. We used a simple model to study the (short-term) population consequences of environmental sex reversal (ESR). We examined the effects on sex ratios, sex chromosome frequencies, and population growth and persistence after exposure to environmental forces with feminizing or masculinizing tendencies. When environmental feminization was strong, X chromosomes were driven to extinction. Analogously, extinction of normally male-linked genetic factors (e.g., Y chromosomes) was caused by continuous environmental masculinization. Although moderate feminization was beneficial for population growth in the absence of large viability effects, our results suggest that the consequences of ESR are generally negative in terms of population size and the persistence of sex chromosomes. Extreme sex ratios resulting from high rates of ESR also reduced effective population sizes considerably. This may limit any evolutionary response to the deleterious effects of ESR. Our findings suggest that ESR changes population growth and sex ratios in some counter-intuitive ways and can change the predominant factor in sex determination from genetic to fully environmental, often within only a few tens of generations. Populations that lose genetic sex determination may quickly go extinct if the environmental forces that cause sex reversal cease.
Resumo:
To control introduced exotic species that have predominantly genetic, but environmentally reversible, sex determination (e.g. many species of fish), Gutierrez and Teem recently modeled the use of carriers of Trojan Y chromosomes--individuals who are phenotypically sex reversed from their genotype. Repeated introduction of YY females into wild populations should produce extreme male-biased sex ratios and eventual elimination of XX females, thus leading to population extinction. Analogous dynamics are expected in systems in which sex determination is influenced by one or a few major genes on autosomes.
Resumo:
Abstract The great diversity of sex determination mechanisms in animals and plants ranges from genetic sex determination (GSD, e.g. mammals, birds, and most dioecious plants) to environmental sex determination (ESD, e.g. many reptiles) and includes a mixture of both, for example when an individual's genetically determined sex is environmentally reversed during ontogeny (ESR, environmental sex reversal, e.g. many fish and amphibia). ESD and ESR can lead to widely varying and unstable population sex ratios. Populations exposed to conditions such as endocrine-active substances or temperature shifts may decline over time due to skewed sex ratios, a scenario that may become increasingly relevant with greater anthropogenic interference on watercourses. Continuous exposure of populations to factors causing ESR could lead to the extinction of genetic sex factors and may render a population dependent on the environmental factors that induce the sex change. However, ESR also presents opportunities for population management, especially if the Y or W chromosome is not, or not severely, degenerated. This seems to be the case in many amphibians and fish. Population growth or decline in such species can potentially be controlled through the introduction of so-called Trojan sex genes carriers, individuals that possess sex chromosomes or genes opposite from what their phenotype predicts. Here, we review the conditions for ESR, its prevalence in natural populations, the resulting physiological and reproductive consequences, and how these may become instrumental for population management.
Resumo:
In sharp contrast to birds and mammals, most cold-blooded vertebrates have homomorphic (morphologically undifferentiated) sex chromosomes. This might result either from recurrent X-Y recombination (occurring e.g. during occasional events of sex reversal) or from frequent turnovers (during which sex-determining genes are overthrown by new autosomal mutations). Evidence for turnovers is indeed mounting in fish, but very few have so far been documented in amphibians, possibly because of practical difficulties in identifying sex chromosomes. Female heterogamety (ZW) has long been established in Bufo bufo, based on sex reversal and crossing experiments. Here, we investigate a sex-linked marker identified from a laboratory cross between Palearctic green toads (Bufo viridis subgroup). The F(1) offspring produced by a female Bufo balearicus and a male Bufo siculus were phenotypically sexed, displaying an even sex ratio. A sex-specific marker detected in highly reproducible AFLP genotypes was cloned. Sequencing revealed a noncoding, microsatellite-containing fragment. Reamplification and genotyping of families of this and a reciprocal cross showed B. siculus to be male heterogametic (XY) and suggested the same system for B. balearicus. Our results thus reveal a cryptic heterogametic transition within bufonid frogs and help explain patterns of hybrid fitness within the B. viridis subgroup. Turnovers of genetic sex-determination systems may be more frequent in amphibians than previously thought and thus contribute to the prevalence of homomorphic sex chromosomes in this group.
Resumo:
RESUMELes modèles classiques sur l'évolution des chromosomes sexuels supposent que des gènes sexe- antagonistes s'accumulent sur les chromosomes sexuels, entraînant ainsi l'apparition d'une région non- recombinante, qui se répand progressivement en favorisant l'accumulation de mutations délétères. En accord avec cette théorie, les chromosomes sexuels que l'on observe aujourd'hui chez les mammifères et les oiseaux sont considérablement différenciés. En revanche, chez la plupart des vertébrés ectothermes, les chromosomes sexuels sont indifférenciés et il existe une impressionnante diversité de mécanismes de détermination du sexe. Au cours de cette thèse, j'ai étudié l'évolution des chromosomes sexuels chez les vertébrés ectothermes, en outre pour mieux comprendre ce contraste avec les vertébrés endothermes. L'hypothèse « high-turnover » postule que les chromosomes sexuels sont remplacés régulièrement à partir d'autosomes afin d'éviter leur dégénérescence. L'hypothèse « fountain-of-youth » propose que la recombinaison entre le chromosome X et le chromosome Y au sein de femelles XY empêche la dégénérescence. Les résultats de ma thèse, basés sur des études théoriques et empiriques, suggèrent que les deux processus peuvent être entraînés par l'environnement et ainsi jouent un rôle important dans l'évolution des chromosomes sexuels chez les vertébrés ectothermes.SUMMARYClassical models of sex-chromosome evolution assume that sexually antagonistic genes accumulate on sex chromosomes leading to a non-recombining region, which progressively expands and favors the accumulation of deleterious mutations. Concordant with this theory, sex chromosomes in extant mammals and birds are considerably differentiated. In most ectothermic vertebrates, such as frogs, however, sex chromosomes are undifferentiated and a striking diversity of sex determination systems is observed. This thesis was aimed to investigate this apparent contrast of sex chromosome evolution between endothermic and ectothermic vertebrates. The "high-turnover" hypothesis holds that sex chromosomes arose regularly from autosomes preventing decay. The "fountain-of-youth" hypothesis posits that sex chromosomes undergo episodic X-Y recombination in sex-reversed XY females, thereby purging ("rejuvenating") the Y chromosome. We suggest that both processes likely played an important role in sex chromosome evolution of ectothermic vertebrates. The literature largely views sex determination as a dichotomous process: individual sex is assumed to be determined either by genetic (genotypic sex determination, GSD) or by environmental factors (environmental sex determination, ESD), most often temperature (temperature sex determination, TSD). We endorsed an alternative view, which sees GSD and TSD as the ends of a continuum. The conservatism of molecular processes among different systems of sex determination strongly supports the continuum view. We proposed to define sex as a threshold trait underlain by a liability factor, and reaction norms allowing modeling interactions between genotypic and temperature effects. We showed that temperature changes (due to e.g., climatic changes or range expansions) are expected to provoke turnovers in sex-determination mechanisms maintaining homomorphic sex chromosomes. The balanced lethal system of crested newts might be the result of such a sex determination turnover, originating from two variants of ancient Y-chromosomes. Observations from a group of tree frogs, on the other hand, supported the 'fountain of youth' hypothesis. We then showed that low rates of sex- reversals in species with GSD might actually be adaptive considering joint effects of deleterious mutation purging and sexually antagonistic selection. Ongoing climatic changes are expected to threaten species with TSD by biasing population sex ratios. In contrast, species with GSD are implicitly assumed immune against such changes, because genetic systems are thought to necessarily produce even sex ratios. We showed that this assumption may be wrong and that sex-ratio biases by climatic changes may represent a previously unrecognized extinction threat for some GSD species.
Resumo:
In some fishes, water chemistry or temperature affects sex determination or creates sex-specific selection pressures. The resulting population sex ratios are hard to predict from laboratory studies if the environmental triggers interact with other factors, whereas in field studies, singular observations of unusual sex ratios may be particularly prone to selective reporting. Long-term monitoring largely avoids these problems. We studied a population of grayling (Thymallus thymallus) in Lake Thun, Switzerland, that has been monitored since 1948. Samples of spawning fish have been caught about 3 times/week around spawning season, and water temperature at the spawning site has been continuously recorded since 1970. We used scale samples collected in different years to determine the average age of spawners (for life-stage specific analyses) and to identify the cohort born in 2003 (an extraordinarily warm year). Recent tissue samples were genotyped on microsatellite markers to test for genetic bottlenecks in the past and to estimate the genetically effective population size (N(e) ). Operational sex ratios changed from approximately 65% males before 1993 to approximately 85% males from 1993 to 2011. Sex ratios correlated with the water temperatures the fish experienced in their first year of life. Sex ratios were best explained by the average temperature juvenile fish experienced during their first summer. Grayling abundance is declining, but we found no evidence of a strong genetic bottleneck that would explain the apparent lack of evolutionary response to the unequal sex ratio. Results of other studies show no evidence of endocrine disruptors in the study area. Our findings suggest temperature affects population sex ratio and thereby contributes to population decline. Persistencia de Proporción de Sexos Desigual en una Población de Tímalos (Salmonidae) y el Posible Papel del Incremento de la Temperatura.
Resumo:
Sex determination can be purely genetic (as in mammals and birds), purely environmental (as in many reptiles), or genetic but reversible by environmental factors during a sensitive period in life, as in many fish and amphibians (Wallace et al. 1999; Baroiller et al. 2009a; Stelkens & Wedekind 2010). Such environmental sex reversal (ESR) can be induced, for example, by temperature changes or by exposure to hormone-active substances. ESR has long been recognized as a means to produce more profitable single-sex cultures in fish farms (Cnaani & Levavi-Sivan 2009), but we know very little about its prevalence in the wild. Obviously, induced feminization or masculinization may immediately distort population sex ratios, and distorted sex ratios are indeed reported from some amphibian and fish populations (Olsen et al. 2006; Alho et al. 2008; Brykov et al. 2008). However, sex ratios can also be skewed by, for example, segregation distorters or sex-specific mortality. Demonstrating ESR in the wild therefore requires the identification of sex-linked genetic markers (in the absence of heteromorphic sex chromosomes) followed by comparison of genotypes and phenotypes, or experimental crosses with individuals who seem sex reversed, followed by sexing of offspring after rearing under non-ESR conditions and at low mortality. In this issue, Alho et al. (2010) investigate the role of ESR in the common frog (Rana temporaria) and a population that has a distorted adult sex ratio. They developed new sex-linked microsatellite markers and tested wild-caught male and female adults for potential mismatches between phenotype and genotype. They found a significant proportion of phenotypic males with a female genotype. This suggests environmental masculinization, here with a prevalence of 9%. The authors then tested whether XX males naturally reproduce with XX females. They collected egg clutches and found that some had indeed a primary sex ratio of 100% daughters. Other clutches seemed to result from multi-male fertilizations of which at least one male had the female genotype. These results suggest that sex-reversed individuals affect the sex ratio in the following generation. But how relevant is ESR if its prevalence is rather low, and what are the implications of successful reproduction of sex-reversed individuals in the wild?
Resumo:
Sexual reproduction is nearly universal in eukaryotes and genetic determination of sex prevails among animals. The astonishing diversity of sex-determining systems and sex chromosomes is yet bewildering. Some taxonomic groups possess conserved and dimorphic sex chromosomes, involving a functional copy (e.g. mammals' X, birds' Z) and a degenerated copy (mammals' Y, birds' W), implying that sex- chromosomes are expected to decay. In contrast, others like amphibians, reptiles and fishes yet maintained undifferentiated sex chromosomes. Why such different evolutionary trajectories? In this thesis, we empirically test and characterize the main hypotheses proposed to prevent the genetic decay of sex chromosomes, namely occasional X-Y recombination and frequent sex-chromosome transitions, using the Palearctic radiation of Hyla tree frogs as a model system. We take a phylogeographic and phylogenetic approach to relate sex-chromosome recombination, differentiation, and transitions in a spatial and temporal framework. By reconstructing the recent evolutionary history of the widespread European tree frog H. arborea, we showed that sex chromosomes can recombine in males, preventing their differentiation, a situation that potentially evolves rapidly. At the scale of the entire radiation, X-Y recombination combines with frequent transitions to prevent sex-chromosome degeneration in Hyla: we traced several turnovers of sex-determining system within the last 10My. These rapid changes seem less random than usually assumed: we gathered evidences that one chromosome pair is a sex expert, carrying genes with key role in animal sex determination, and which probably specialized through frequent reuse as a sex chromosome in Hyla and other amphibians. Finally, we took advantage of secondary contact zones between closely-related Hyla lineages to evaluate the consequences of sex chromosome homomorphy on the genetics of speciation. In comparison with other systems, the evolution of sex chromosomes in Hyla emphasized the existence of consistent evolutionary patterns within the chaotic diversity of flexibility of cold-blooded vertebrates' sex-determining systems, and provides insights into the evolution of recombination. Beyond sex-chromosome evolution, this work also significantly contributed to speciation, phylogeography and applied conservation research. -- La reproduction sexuée est quasi-universelle chez les eucaryotes et le sexe est le plus souvent déterminé génétiquement au sein du règne animal. L'incroyable diversité des systèmes de reproduction et des chromosomes sexuels est particulièrement étonnante. Certains groupes taxonomiques possèdent des chromosomes sexuels dimorphiques et très conservés, avec une copie entièrement fonctionnelle (ex : le X des mammifères, le Z des oiseaux) et une copie dégénérée (ex : le Y des mammifères, le W des oiseaux), suggérant que les chromosomes sexuels sont voués à se détériorer. Cependant les chromosomes sexuels d'autres groupes tels que les amphibiens, les reptiles et les poissons sont pour la plupart indifférenciés. Comment expliquer des trajectoires évolutives si différentes? Au cours de cette thèse, nous avons étudié empiriquement les processus évolutifs pouvant maintenir les chromosomes sexuels intacts, à savoir la recombinaison X-Y occasionnel ainsi que les substitutions fréquentes de chromosomes sexuels, en utilisant les rainettes Paléarctiques du genre Hyla comme modèle d'étude. Nous avons adopté une approche phylogéographique et phylogénétique pour appréhender les événements de recombinaison, de différenciation et de transitions de chromosomes sexuels dans un contexte spatio-temporel. En retraçant l'histoire évolutive récente de la rainette verte H. arborea, nous avons mis en évidence que les chromosomes sexuels pouvaient recombiner chez les mâles, empêchant ainsi leur différenciation, et que ce processus avait le potentiel d'évoluer très rapidement. A l'échelle plus globale de la radiation, il apparait que les phénomènes de recombinaison X-Y soient également accompagnés de substitutions de chromosomes sexuels, et participent de concert au maintien de chromosomes sexuels intacts dans les populations: le système de détermination du sexe des rainettes a changé plusieurs fois au cours des 10 derniers millions d'années. Ces transitions fréquentes ne semblent pas aléatoires: nous avons identifié une paire de chromosomes qui présente des caractéristiques présageant d'une spécialisation dans le déterminisme du sexe (notamment car elle possède des gènes importants pour cette fonction), et qui a été réutilisée plusieurs fois comme tel chez les rainettes ainsi que d'autres amphibiens. Enfin, nous avons étudié l'hybridation entre différentes espèces dans leurs zones de contact, afin d'évaluer si l'absence de différenciation entre X et Y jouaient un rôle dans les processus génétiques de spéciation. Outre son intérêt pour la compréhension de l'évolution des chromosomes sexuels, ce travail contribue de manière significative à d'autres domaines de recherche tels que la spéciation, la phylogéographie, ainsi que la biologie de la conservation.
Resumo:
Sex-chromosome differentiation was recently shown to vary among common frog populations in Fennoscandia, suggesting a trend of increased differentiation with latitude. By rearing families from two contrasted populations (respectively, from northern and southern Sweden), we show this disparity to stem from differences in sex-determination mechanisms rather than in XY-recombination patterns. Offspring from the northern population display equal sex ratios at metamorphosis, with phenotypic sexes that correlate strongly with paternal LG2 haplotypes (the sex chromosome); accordingly, Y haplotypes are markedly differentiated, with male-specific alleles and depressed diversity testifying to their smaller effective population size. In the southern population, by contrast, a majority of juveniles present ovaries at metamorphosis; only later in development do sex ratios return to equilibrium. Even at these later stages, phenotypic sexes correlate only mildly with paternal LG2 haplotypes; accordingly, there are no recognizable Y haplotypes. These distinct patterns of gonadal development fit the concept of 'sex races' proposed in the 1930s, with our two populations assigned to the 'differentiated' and 'semi-differentiated' races, respectively. Our results support the suggestion that 'sex races' differ in the genetic versus epigenetic components of sex determination. Analysing populations from the 'undifferentiated race' with high-density genetic maps should help to further test this hypothesis.
Resumo:
Identifying homology between sex chromosomes of different species is essential to understanding the evolution of sex determination. Here, we show that the identity of a homomorphic sex chromosome pair can be established using a linkage map, without information on offspring sex. By comparing sex-specific maps of the European tree frog Hyla arborea, we find that the sex chromosome (linkage group 1) shows a threefold difference in marker number between the male and female maps. In contrast, the number of markers on each autosome is similar between the two maps. We also find strongly conserved synteny between H. arborea and Xenopus tropicalis across 200 million years of evolution, suggesting that the rate of chromosomal rearrangement in anurans is low. Finally, we show that recombination in males is greatly reduced at the centers of large chromosomes, consistent with previous cytogenetic findings. Our research shows the importance of high-density linkage maps for studies of recombination, chromosomal rearrangement and the genetic architecture of ecologically or economically important traits.
Resumo:
The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA-repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination.
Resumo:
Although exceptions may be readily identified, two generalizations concerning genetic differences among species may be drawn from the available allozyme and chromosome data. First, structural gene differences among species vary widely. In many cases, species pairs do not differ more than intraspecific populations. This suggests that either very few or no gene substitutions are required to produce barriers to reproduction (Avise 1976). Second, chromosome form and/or number differs among even closely related species (White 1963; 1978; Fredga 1977; Wright 1970). Many of the observed chromosomal differences involve translocational rearrangements; these produce severe fitness depression in heterozygotes and were, thus, long considered unlikely candidates for the fixation required of genetic changes leading to speciation (Wright 1977). Nonetheless, the fact that species differences are frequently translocational argues convincingly for their fixation despite prejudices to the contrary. Haldane's rule states that in the F of interspecific crosses, the heterogametic sex is absent or sterile in the preponderance of cases (Haldane 1932). This rule definitely applies in the genus Dr°sophila (Ehrman 1962). Sex chromosome translocations do not impose a fitness depression as severe as that imposed by autosomal translocations, and X-Y translocations may account for Haldane's rule (Haldane 1932). Consequently a study of the fit ness parameters of an X·yL and a yS chromosome in Drosophila melanogaster populations was initiated by Tracey (1972). Preliminary results suggested that x.yL//YSmales enjoyed a mating advantage with X·yL//X·yL females, that this advantage was frequency dependent, that the translocation produced sexual isolation and that interactions between the yL, yS and a yellow marker contributed to the observed isolation (Tracey and Espinet 1976; Espinet and Tracey 1976). Encouraged by the results of these prelimimary studies, further experiments were performed to clarify the genetic nature of the observed sexual isolation, S the reality of the y frequency dependent fitness .and the behavioural changes, if any, produced by the translocation. The results of this work are reported herein. Although the marker genes used in earlier studies, sparkling poliert an d yellow have both been found to affect activity,but only yellow effects asymmetric sexual isolation. In addition yellow effects isolation through an interaction with the T(X-y) chromosomes, yS also effects isolation, and translocational strains are isolated from those of normal karyotype in the absence of marker gene differences. When yS chromosomes are in competition with y chromosomes on an X.yL background, yS males are at a distinct advantage only when their frequency is less than 97%. The sex chromosome translocation alters the normal courtship pattern by the incorporation of circling between vibration and licking in the male repertoire. Finally a model of speciation base on the fixation of this sex chromosome translocation in a geographically isolated gene pool is proposed.
Resumo:
We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.
Resumo:
DMRT (Doublesex and Mab-3 related transcription factor) proteins generally associated with sexual differentiation in many organisms share a common DNA binding domain and are often expressed in reproductive tissues. Aside from doublesex, which is a central factor in the regulation of sex determination, Drosophila possesses three different dmrt genes that are of unknown function. Because the association with sexual differentiation and reproduction is not universal and some DMRT proteins have been found to play other developmental roles we chose to further characterize one of these Drosophila genes. We carried out genetic analysis of dmrt93B, which was previously found to be expressed sex-specifically in the developing somatic gonad and to affect testis morphogenesis in RNAi knockdowns. In order to disrupt this gene, the GAL4 yeast transcriptional activator followed by a polyadenylation signal was inserted after the dmrt93B start codon and introduced into the genome by homologous recombination. Analysis of the knock-in mutation as well as a small deletion removing all dmrt93B sequence demonstrate that loss of function causes partial lethality at the late pupal stage. Surprisingly, these mutations have no significant effect on gonad formation or male fertility. Analysis of GAL4-driven GFP reporter expression indicates that the dmrt93B promoter activity is highly specific to neurons in the suboesophageal and proventricular ganglion in larva and adult of both sexes suggesting a possible role in digestive tract function. Using the Capillary Feeder (CAFÉ) assay to measure daily food intake we find that reduction in this gene’s function leads to an increase in food consumption. These results suggest dmrt93 plays an important role in the formation or maintenance of neurons that affect feeding and support the idea that dmrt genes may not be restricted to roles in sexual differentiation.