998 resultados para Sertoli cells
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although several methods of testicular biopsy have been proposed previously, testicular fine needle aspiration (FNA) has proved to be the simplest, the most rapid, inexpensive, and overall the least invasive technique for obtaining testicular biopsies Testicular FNA is indicated for fertility investigations in stallions with oligozoospermia or azoospermia It is also used for differential diagnosis of testicular enlargement After sedation the stallion's testis is punctured to obtain testicular parenchyma samples containing cells mainly from the seminiferous epithelium the material obtained is used to perform smears which are analyzed for identification and quantification of term cells and Sertoli cells The results are based on the presence of the cell types found in the smears and the proportions of Sertoli cells per germ cells In addition to being a very useful diagnostic tool, testicular FNA is also used for follow-up examinations, as it is minimally invasive
Resumo:
Nesta pesquisa foram obtidos dados histológicos e morfométricos comparativos sobre os testículos de gatos, pós-orquiectomia, divididos em dois grupos: Grupo 1, gatos com até 1 ano de idade e Grupo 2, animais acima de 1 ano. Verificou-se que: (1) aos 4 meses de idade os túbulos seminíferos apresentaram-se pouco desenvolvidos e com ausência de luz, epitélio seminífero baixo, células de Sertoli indiferenciadas e tecido intersticial escasso; (2) aos 5 meses os túbulos seminíferos começaram a se diferenciar com aumento do diâmetro e luz tubulares e as demais estruturas permaneceram semelhantes à observação anterior; (3) aos 6-7 meses ocorreu o início da espermatogênese e espermiogênese; as células de Leydig apareceram maiores, poliédricas com citoplasma vacuolizado e núcleo claro, e tecido intersticial esparso com poucos vasos sangüíneos; (4) os animais com 1 ano de idade apresentaram morfologia testicular igual à do animal adulto, com túbulos seminíferos de maior diâmetro, epitélio germinativo alto e luz tubular pequena, as células de Leydig aparecendo poliédricas, com dimensões variadas, citoplasma vacuolizado, núcleo claro e nucléolo evidente, e espaço intertubular seminífero variado com vasos sanguíneos, predominantemente evidentes; (5) no Grupo 1 o diâmetro médio dos túbulos seminíferos foi de 160,58µm e no Grupo 2 foi de 185,94µm, sendo os valores médios significantes entre si; (6) a altura média do epitélio seminífero foi de 49,51µm para o Grupo 1 e de 63,29µm para o Grupo 2, estaticamente significantes; (7) os maiores valores mensurados foram obtidos para os gatos do Grupo 2, por serem gatos adultos e portanto com os órgãos reprodutores funcionais.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Single high doses of estrogen (35 mg/kg body weight) were administered to young rats aiming to exacerbate its effects on germ cell populations. The short-term (1 week) and medium-term (7 weeks) consequences of this estrogenic treatment (ET) on the testis were evaluated using light and electron microscopies, quantitative methods and TUNEL reaction. Short-term ET led to 50% atrophy of the testis, however, in the medium term the gonado-somatic index was recovered. No histopathological alterations were found at seminiferous epithelium except for short-term severe degeneration of elongated spermatids (EL) and low frequency of these cells in both time intervals. Two morphologically distinct patterns of degeneration were observed: (1) clusters of EL which were TUNEL-negative and exhibited bizarre appearance and nuclear fragmentation, (2) isolated apoptotic EL within the cytoplasm of Sertoli cells (SC). Both degenerative phenomena were more frequent in stages III - VIII of seminiferous cycle, whereas at stages I and II only coiling of flagellum was observed. One week after ET, small amounts of EL were detected in stages IX - XII, suggesting spermiation failure. Signs of functional SC damage such as an accumulation of myelin-like inclusions in their cytoplasm were observed in the short but not medium-term. However, the apoptotic rates still remained five times higher and the number of elongated spermatids was three-fold lower. Our data indicate that exposure to a high dose of estrogen around puberty has stage-specific effects on the testis and causes massive degeneration of elongated spermatids. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The gonads and the germinative cells of 3 male hinnies were studied with light and transmission electron microscopy with the aim to observe the development of germ cells and verify the morphological modifications due to the hybridization. The hinny seminiferous epithelium presented Sertoli cells and spermatogonia with normal features and anomalous spermatocytes I. The other cells from the spermatogenic sequence were not seen. Most of the alterations began to occur in the cytes I, which presented nuclear vacuolization and deposits of amorphous material between the carioteca and the nuclear lamina, forming vesicles, or exaggerated chromatin condensation, resulting in pyknosis. In the cytoplasm vacuolization was also observed, besides organelle destruction.The arrest of meiosis due to lock of chromosome homologies leads to germinative cell degeneration and, therefore, the spermatogenesis arrest. This fact causes a profound alteration in the seminiferous epithelium morphology in comparison with the parental species.
Resumo:
The gerbil (Meriones unguiculatus) is a rodent native of the and regions of Mongolia and China. Because the gerbil can be easily bred in laboratory conditions, this species has been largely used as an experimental model in biomedical research. However, there is still little information concerning the testis structure and function in the gerbil. In this regard, we performed a detailed morphofunctional analysis of the gerbil testis and estimated the spermatogenic cycle length utilizing H-3-thymidine as a marker for germ cell progression during their evolution through the spermatogenic process. The stage frequencies of the XII stages characterized according to the acrosome formation and development were (I-XII) 13.8, 10.1, 8.1, 7.8, 4.0, 11.2, 7.5, 7.1, 5.9, 7.6, 8.1, and 8.9. The mean duration of each seminiferous epithelium cycle was determined to be 10.6 +/- 1.0 days and the total duration of spermatogenesis, based on 4.5 cycles, was approximately 47.5 days. The volume density of tubular and interstitial compartments was approximately 92% and 8%, respectively. Based on the volume occupied by seminiferous tubules in the testis and the tubular diameter, about 9 and 18 m of seminiferous tubules were found per testis and per gram of testis, respectively. Twelve primary spermatocytes were formed from each type A1 spermatogonia. The meiotic index was 2.8, indicating that 30% of cell loss occurs during meiosis. The number of Leydig and Sertoli cells per gram of the testis was 28 million and each Sertoli cell was able to support approximately 13 spermatids. The daily sperm production per gram of testis (spermatogenic efficiency) was 33 million. Taken together, these data indicate that, mainly due to the high seminiferous tubule volume density and Sertoli cell support capacity for germ cells, the gerbil presents high spermatogenic efficiency compared with other mammalian species already investigated. The data obtained in the present study might provide the basis for future research involving the reproductive biology in this species.
Resumo:
The seminiferous tubules of Prochilodus scrofa present a coiled morphological arrangement with intertubular anastomoses and unrestricted spermatogonial distribution. The structural pattern of the seminiferous tubules is cystic, with cysts formed by cytoplasmic prolongations of Sertoli cells. Inside the cysts are observed different types of germ cells. The seminiferous tubules open individually on the ventral surface of the main testicular duct present in each testis. Each main testicular duct prolongs as a spermatic duct, fusing with the spermatic duct of the opposite side to form the common spermatic duct which opens into the urogenital papilla. The mature sperm cysts break and extravasate their content into the lumen of the seminiferous tubules from which the seminal fluid and the spermatozoa penetrate the main testicular duct, the spermatic duct and the common spermatic duct for semen ejaculation.
Resumo:
Spermatogenesis of 'corvina' P. squamosissimus starts from a stem cell that gives rise to germ cells. These cells are enveloped by Sertoli cells, forming cysts. The germ cells in the cysts are all at the same stage of development and are interconnected by cytoplasmic bridges. Spermatogonia are the largest germ cells. In the cysts, these cells differentiate into primary spermatogonia and secondary spermatogonia. The primary spermatogonia are isolated in the cyst and give rise to the secondary spermatogonia. After several mitotic divisions, they produce spermatocytes I, which can be identified by synaptonemal complexes in the nucleus. The spermatocytes I enter the first phase of meiosis to produce the spermatocytes II. These are not very frequently seen because they rapidly undergo a second phase of meiosis to produce spermatids.
Resumo:
In anuran amphibian Scinax fuscovarius, the spermatogenesis occurs in structures called seminiferous loculi, in which germ epithelium is organized in spermatocysts. Each cyst contains cells in the same stage of cytodifferentiation. Characteristics of each cellular type and their groups made the identification and differentiation of the germ lineage cells possible. In the basis of the epithelium there are the spermatogonia I, the biggest cells and always associated with the Sertoli cell. After the phase of mitotic proliferation, the cysts containing variable number of spermatogonia II are originated, quite smaller and with cellular boundaries a little distinct. After differentiation and growth in volume, the spermatocytes I appear, the nuclei of which are spherical and with different degrees of compaction of the nuclear material. Starting the meiotic process, the spermatocytes II are originated, which by means of the second meiotic division become haploid cells, the spermatids I. These two last spermatocysts are very similar. In this phase, the cells will go through a prominent process of differentiation until they form the spermatids II, which are elongated and begin to be organized in bundles supported by prominent Sertoli cells. With the process of spermiogenesis, spermatozoa appear, usually observed in compact bundles with tails turned to the lumen and their heads fitted in their support cells. In more advanced stages, the spermatozoa can be observed free in the locular lumen, ready to follow the spermatic path.