911 resultados para Sequence Motif


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytotoxic T cells (CTL) recognize short peptides that are derived from the proteolysis of endogenous cellular proteins and presented on the cell surface as a complex with MHC class I molecules. CTL can recognize single amino acid substitutions in proteins, including those involved in malignant transformation. The mutated sequence of an oncogene may be presented on the cell surface as a peptide, and thus represents a potential target antigen for tumour therapy. The p21ras gene is mutated in a wide variety of tumours and since the transforming mutations result in amino acid substitutions at positions 12, 13 and 61 of the protein, a limited number of ras peptides could potentially be used in the treatment of a wide variety of malignancies. A common substitution is Val for Gly at position 12 of p21ras. In this study, we show that the peptide sequence from position 5 to position 14 with Val at position 12-ras p5-14 (Val-12)-has a motif which allows it to bind to HLA-A2.1. HLA-A2.1-restricted ras p5-14 (Val-12)-specific CTL were induced in mice transgenic for both HLA-A2.1 and human beta2-microglobulin after in vivo priming with the peptide. The murine CTL could recognize the ras p5-14 (Val-12) peptide when they were presented on both murine and human target cells bearing HLA-A2.1. No cross-reactivity was observed with the native peptide ras p5-14 (Gly-12), and this peptide was not immunogenic in HLA-A2.1 transgenic mice. This represents an interesting model for the study of an HLA-restricted CD8 cytotoxic T cell response to a defined tumour antigen in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microtubule-associated protein 2 (MAP2) exists in both high- and low-molecular mass isoforms, each of which has a tubulin-binding domain consisting of 3 imperfect tandem repeats of 31 amino acids containing a more highly conserved 18 amino acid 'core' sequence. We describe here a novel form of low molecular mass MAP2 (MAP2c) that contains an additional 4th repeat of this tubulin-binding motif. Like the 3 previously known repeat sequences, this 4th copy is highly conserved between MAP2 and the two other known members of the same gene family, tau and MAP4. In each of these three genes the additional 4th repeat is inserted between the 1st and 2nd repeats of the 3-repeat form of the molecule. Experiments with brain cell cultures, in which the relative proportions of neurons and glia had been manipulated by drug treatment, showed that 4-repeat MAP2c is associated with glial cells whereas 3-repeat MAP2c is expressed in neurons. Whereas 3-repeat MAP2c is expressed early in development and then declines, the level of 4-repeat MAP2c increases later in development, corresponding to the relatively late differentiation of glial cells compared to neurons. When transfected into non-neuronal cells, the 4-repeat version of MAP2c behaved indistinguishably from the 3-repeat form in stabilising and rearranging cellular microtubules. The presence of an additional 4th repeat of the tubulin-binding motif in all three members of the MAP2 gene family suggests that this variant arose prior to their differentiation from an ancestral gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Na,K-ATPase is a potential target for regulatory phosphorylation by protein kinase A and C (PKA and PKC). To identify the phosphorylation sites, we have mutated the alpha 1-subunit of Bufo marinus in a highly conservative PKA and in 20 different PKC consensus sequences. The mutants were expressed in Xenopus oocytes and their phosphorylation capacity tested in homogenates upon stimulation of PKA or PKC. While serine 943 (Ser-943) was identified as a unique target site for PKA, none of the PKC consensus serine or threonine residues are implicated in PKC phosphorylation. Controlled trypsinolysis of phosphorylated alpha-subunits of various purified enzyme preparations and of alpha/beta complexes from oocyte homogenates revealed that PKC phosphorylation was exclusively associated with the N terminus. A fusion protein containing the first 32 amino acids of the Bufo alpha-subunit was phosphorylated in vitro and serine and threonine residues (Thr-15 and Ser-16) in this region were identified by site-directed mutagenesis as the PKC phosphorylation sites. Finally, the Bufo alpha-subunit was phosphorylated by protein kinases in transfected COS-7 cells. In intact cells, PKA stimulation induced phosphorylation exclusively on Ser-943 and PKC stimulation mainly on Thr-15 and Ser-16, which are contained in a novel PKC phosphorylation motif.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have defined structural features that are apparently important for the binding of four different, unrelated antigenic epitopes to the same major histocompatibility complex (MHC) class I molecule, H-2Kd. The four epitopes are recognized in the form of synthetic peptides by cytotoxic T lymphocytes of the appropriate specificity. By analysis of the relative potency of truncated peptides, we demonstrated that for each of the four epitopes, optimal antigenic activity was present in a peptide of 9 or 10 amino acid residues. A comparison of the relative competitor activity of the different-length peptides in a functional competition assay, as well as in a direct binding assay based on photoaffinity labeling of the Kd molecule, indicated that the enhanced potency of the peptides upon reduction in length was most likely due to a higher affinity of the shorter peptides for the Kd molecule. A remarkably simple motif that appears to be important for the specific binding of Kd-restricted peptides was identified by the analysis of peptides containing amino acid substitutions or deletions. The motif consists of two elements, a Tyr in the second position relative to the NH2 terminus and a hydrophobic residue with a large aliphatic side chain (Leu, Ile, or Val) at the COOH-terminal end of the optimal 9- or 10-mer peptides. We demonstrated that a simple peptide analogue (AYP6L) that incorporates the motif can effectively and specifically interact with the Kd molecule. Moreover, all of the additional Kd-restricted epitopes defined thus far in the literature contain the motif, and it may thus be useful for the prediction of new epitopes recognized by T cells in the context of this MHC class I molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The riboregulator RsmY of Pseudomonas fluorescens strain CHA0 is an example of small regulatory RNAs belonging to the global Rsm/Csr regulatory systems controlling diverse cellular processes such as glycogen accumulation, motility, or formation of extracellular products in various bacteria. By binding multiple molecules of the small regulatory protein RsmA, RsmY relieves the negative effect of RsmA on the translation of several target genes involved in the biocontrol properties of strain CHA0. RsmY and functionally related riboregulators have repeated GGA motifs predicted to be exposed in single-stranded regions, notably in the loops of hairpins. The secondary structure of RsmY was corroborated by in vivo cleavage with lead acetate. RsmY mutants lacking three or five (out of six) of the GGA motifs showed reduced ability to derepress the expression of target genes in vivo and failed to bind the RsmA protein efficiently in vitro. The absence of GGA motifs in RsmY mutants resulted in reduced abundance of these transcripts and in a shorter half-life (< or = 6 min as compared with 27 min for wild type RsmY). These results suggest that both the interaction of RsmY with RsmA and the stability of RsmY strongly depend on the GGA repeats and that the ability of RsmY to interact with small regulatory proteins such as RsmA may protect this RNA from degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3′UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In this work, we report the characterization of the Drosophila melanogaster SBP2 (dSBP2). Despite its shorter length, it retained the same selenoprotein synthesis-promoting capabilities as the mammalian counterpart. However, a major difference resides in the SECIS recognition pattern: while human SBP2 (hSBP2) binds the distinct form 1 and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only. In addition, we report the identification of a K (lysine)-rich domain in all SBP2s, essential for SECIS and 60S ribosomal subunit binding, differing from the well-characterized L7Ae RNA-binding domain. Swapping only five amino acids between dSBP2 and hSBP2 in the K-rich domain conferred reversed SECIS-binding properties to the proteins, thus unveiling an important sequence for form 1 binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sequence profile method (Gribskov M, McLachlan AD, Eisenberg D, 1987, Proc Natl Acad Sci USA 84:4355-4358) is a powerful tool to detect distant relationships between amino acid sequences. A profile is a table of position-specific scores and gap penalties, providing a generalized description of a protein motif, which can be used for sequence alignments and database searches instead of an individual sequence. A sequence profile is derived from a multiple sequence alignment. We have found 2 ways to improve the sensitivity of sequence profiles: (1) Sequence weights: Usage of individual weights for each sequence avoids bias toward closely related sequences. These weights are automatically assigned based on the distance of the sequences using a published procedure (Sibbald PR, Argos P, 1990, J Mol Biol 216:813-818). (2) Amino acid substitution table: In addition to the alignment, the construction of a profile also needs an amino acid substitution table. We have found that in some cases a new table, the BLOSUM45 table (Henikoff S, Henikoff JG, 1992, Proc Natl Acad Sci USA 89:10915-10919), is more sensitive than the original Dayhoff table or the modified Dayhoff table used in the current implementation. Profiles derived by the improved method are more sensitive and selective in a number of cases where previous methods have failed to completely separate true members from false positives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many DNA helicases utilise the energy derived from nucleoside triphosphate hydrolysis to fuel their actions as molecular motors in a variety of biological processes. In association with RuvA, the E. coli RuvB protein (a hexameric ring helicase), promotes the branch migration of Holliday junctions during genetic recombination and DNA repair. To analyse the relationship between ATP-dependent DNA helicase activity and branch migration, a site-directed mutation was introduced into the helicase II motif of RuvB. Over-expression of RuvBD113N in wild-type E. coli resulted in a dominant negative UVs phenotype. The biochemical properties of RuvBD113N were examined and compared with wild-type RuvB in vitro. The single amino acid substitution resulted in major alterations to the biochemical activities of RuvB, such that RuvBD113N was defective in DNA binding and ATP hydrolysis, while retaining the ability to form hexameric rings and interact with RuvA. RuvBD113N formed heterohexamers with wild-type RuvB, and could inhibit RuvB function by affecting its ability to bind DNA. However, heterohexamers exhibited an ability to promote branch migration in vitro indicating that not all subunits of the ring need to be catalytically competent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To generate peripheral T cells that are both self-MHC restricted and self-MHC tolerant, thymocytes are subjected to positive and negative selection. How the TCR discriminates between positive and negative selection ligands is not well understood, although there is substantial evidence that the CD4 and CD8 coreceptors play an important role in this cell fate decision. We have previously identified an evolutionarily conserved motif in the TCR, the alpha-chain connecting peptide motif (alpha-CPM), which allows the TCR to deliver positive selection signals. Thymocytes expressing alpha-CPM-deficient receptors do not undergo positive selection, whereas their negative selection is not impaired. In this work we studied the ligand binding and receptor function of alpha-CPM-deficient TCRs by generating T cell hybridomas expressing wild-type or alpha-CPM-deficient forms of the T1 TCR. This K(d)-restricted TCR is specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide(252-260) IASA-YIPSAEK(ABA)I and is therefore amenable to TCR photoaffinity labeling. The experiments presented in this work show that alpha-CPM-deficient TCRs fail to cooperate with CD8 to enhance ligand binding and functional responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous studies we showed that the wild-type histamine H(2) receptor stably expressed in Chinese hamster ovary cells is constitutively active. Because constitutive activity of the H(2) receptor is already found at low expression levels (300 fmol/mg protein) this receptor is a relatively unique member of the G-protein-coupled receptor (GPCR) family and a useful tool for studying GPCR activation. In this study the role of the highly conserved DRY motif in activation of the H(2) receptor was investigated. Mutation of the aspartate 115 residue in this motif resulted in H(2) receptors with high constitutive activity, increased agonist affinity, and increased signaling properties. In addition, the mutant receptors were shown to be highly structurally instable. Mutation of the arginine 116 residue in the DRY motif resulted also in a highly structurally instable receptor; expression of the receptor could only be detected after stabilization with either an agonist or inverse agonist. Moreover, the agonist affinity at the Arg-116 mutant receptors was increased, whereas the signal transduction properties of these receptors were decreased. We conclude that the Arg-116 mutant receptors can adopt an active conformation but have a decreased ability to couple to or activate the G(s)-protein. This study examines the pivotal role of the aspartate and arginine residues of the DRY motif in GPCR function. Disruption of receptor stabilizing constraints by mutation in the DRY motif leads to the formation of active GPCR conformations, but concomitantly to GPCR instability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TAT-RasGAP317-326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317-326 sequence for the anticancer activities of TAT-RasGAP317-326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317-326.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of cellular proteins has the ability to recognize DNA lesions induced by the anti-cancer drug cisplatin, with diverse consequences on their repair and on the therapeutic effectiveness of this drug. We report a novel gene involved in the cell response to cisplatin in vertebrates. The RDM1 gene (for RAD52 Motif 1) was identified while searching databases for sequences showing similarities to RAD52, a protein involved in homologous recombination and DNA double-strand break repair. Ablation of RDM1 in the chicken B cell line DT40 led to a more than 3-fold increase in sensitivity to cisplatin. However, RDM1-/- cells were not hypersensitive to DNA damages caused by ionizing radiation, UV irradiation, or the alkylating agent methylmethane sulfonate. The RDM1 protein displays a nucleic acid binding domain of the RNA recognition motif (RRM) type. By using gel-shift assays and electron microscopy, we show that purified, recombinant chicken RDM1 protein interacts with single-stranded DNA as well as double-stranded DNA, on which it assembles filament-like structures. Notably, RDM1 recognizes DNA distortions induced by cisplatin-DNA adducts in vitro. Finally, human RDM1 transcripts are abundant in the testis, suggesting a possible role during spermatogenesis.