946 resultados para Septic tanks.
Resumo:
Song and Banner (2002, henceforth referred to as SB02) used a numerical wave tank (developed by Drimer and Agnon, and further refined by Segre, henceforth referred to as DAS) to study the wave breaking in the deep water, and proposed a dimensionless breaking threshold that based on the behaviour of the wave energy modulation and focusing during the evolution of the wave group. In this paper, two modified DAS models are used to further test the SB02's results, the first one (referred to MDAS1) corrected many integral calculation errors appeared in the DAS code, and the second one (referred to MDAS2) replaced the linear boundary element approximation of DAS into the cubic element on the free surface. Researches show that the results of MDAS1 are the same with those of DAS for the simulations of deep water wave breaking, but, the different values of the wavemaker amplitude, the breaking time and the maximum local average energy growth rate delta(max) for the marginal breaking cases are founded by MDAS2 and MDAS1. However, MDAS2 still satisfies the SB02' s breaking threshold. Furthermore, MDAS1 is utilized to study the marginal breaking case in the intermediate water depth when wave passes over a submerged slope, where the slope is given by 1 : 500, 1 : 300, 1 : 150 or 1 : 100. It is found that the maximum local energy density U increases significantly if the slope becomes steeper, and the delta(max) decreases weakly and increases intensively for the marginal recurrence case and marginal breaking case respectively. SB02's breaking threshold is still valid for the wave passing over a submerged slope gentler than 1 : 100 in the intermediate water depth.
Resumo:
Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L- 1 (0.018 mg TRP L- 1) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km- 2 to 4.6 km- 2 and 13.8 km- 2 to 17.2 km- 2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.