995 resultados para Self-Adjoint Derivation Ranges


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Schrödinger equation for a relativistic point particle in an external one-dimensional δ-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudodifferential operator H=p2+m2−−−−−−−√. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point. Thus it can be used to illustrate nontrivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We regularize compact and non-compact Abelian Chern–Simons–Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R, each local Hilbert space is analogous to the one of a charged “particle” moving in the link-pair group space R2 in a constant “magnetic” background field. In the compact case, the link-pair group space is a torus U(1)2 threaded by k units of quantized “magnetic” flux, with k being the level of the Chern–Simons theory. The holonomies of the torus U(1)2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1) to Z(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern–Simons limit of a large “photon” mass, this results in a Z(k)-symmetric variant of Kitaev’s toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle . Non-Abelian U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-relativistic hydrogen atom enjoys an accidental SO(4) symmetry, that enlarges the rotational SO(3) symmetry, by extending the angular momentum algebra with the Runge–Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson–Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius R with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter γ, in general the accidental SO(4) symmetry is lifted. However, for R=(l+1)(l+2)a (where a is the Bohr radius and l is the orbital angular momentum) some degeneracy remains when γ=∞ or γ = 2/R. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of R and γ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze perturbations of the harmonic oscillator type operators in a Hilbert space H, i.e. of the self-adjoint operator with simple positive eigenvalues μ k satisfying μ k+1 − μ k ≥ Δ > 0. Perturbations are considered in the sense of quadratic forms. Under a local subordination assumption, the eigenvalues of the perturbed operator become eventually simple and the root system contains a Riesz basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the influence of a background uniform magnetic field and boundary conditions on the vacuum of a quantized charged spinor matter field confined between two parallel neutral plates; the magnetic field is directed orthogonally to the plates. The admissible set of boundary conditions at the plates is determined by the requirement that the Dirac Hamiltonian operator be self-adjoint. It is shown that, in the case of a sufficiently strong magnetic field and a sufficiently large separation of the plates, the generalized Casimir force is repulsive, being independent of the choice of a boundary condition, as well as of the distance between the plates. The detection of this effect seems to be feasible in the foreseeable future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kozlov & Maz'ya (1989, Algebra Anal., 1, 144–170) proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems. However, in many applied problems, operators appear that do not satisfy these requirements, e.g. Helmholtz-type operators. Therefore, in this study, an alternating procedure for solving Cauchy problems for self-adjoint non-coercive elliptic operators of second order is presented. A convergence proof of this procedure is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider analytical and numerical solutions to the Dirichlet boundary-value problem for the biharmonic partial differential equation on a disc of finite radius in the plane. The physical interpretation of these solutions is that of the harmonic oscillations of a thin, clamped plate. For the linear, fourth-order, biharmonic partial differential equation in the plane, it is well known that the solution method of separation in polar coordinates is not possible, in general. However, in this paper, for circular domains in the plane, it is shown that a method, here called quasi-separation of variables, does lead to solutions of the partial differential equation. These solutions are products of solutions of two ordinary linear differential equations: a fourth-order radial equation and a second-order angular differential equation. To be expected, without complete separation of the polar variables, there is some restriction on the range of these solutions in comparison with the corresponding separated solutions of the second-order harmonic differential equation in the plane. Notwithstanding these restrictions, the quasi-separation method leads to solutions of the Dirichlet boundary-value problem on a disc with centre at the origin, with boundary conditions determined by the solution and its inward drawn normal taking the value 0 on the edge of the disc. One significant feature for these biharmonic boundary-value problems, in general, follows from the form of the biharmonic differential expression when represented in polar coordinates. In this form, the differential expression has a singularity at the origin, in the radial variable. This singularity translates to a singularity at the origin of the fourth-order radial separated equation; this singularity necessitates the application of a third boundary condition in order to determine a self-adjoint solution to the Dirichlet boundary-value problem. The penultimate section of the paper reports on numerical solutions to the Dirichlet boundary-value problem; these results are also presented graphically. Two specific cases are studied in detail and numerical values of the eigenvalues are compared with the results obtained in earlier studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier-Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint second-order elliptic partial differential equations. In order to solve the resulting system of nonlinear equations, we exploit a (damped) Newton-GMRES algorithm. Numerical experiments demonstrating the practical performance of the proposed discontinuous Galerkin method with higher-order polynomials are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model based on the cluster process representation of the self-exciting process model in White and Porter 2013 and Ruggeri and Soyer 2008is derived to allow for variation in the excitation effects for terrorist events in a self-exciting or cluster process model. The details of the model derivation and implementation are given and applied to data from the Global Terrorism Database from 2000–2012. Results are discussed in terms of practical interpretation along with implications for a theoretical model paralleling existing criminological theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach is used to study the global dynamics of regenerative metal cutting in turning. The cut surface is modeled using a partial differential equation (PDE) coupled, via boundary conditions, to an ordinary differential equation (ODE) modeling the dynamics of the cutting tool. This approach automatically incorporates the multiple-regenerative effects accompanying self-interrupted cutting. Taylor's 3/4 power law model for the cutting force is adopted. Lower dimensional ODE approximations are obtained for the combined tool–workpiece model using Galerkin projections, and a bifurcation diagram computed. The unstable solution branch off the subcritical Hopf bifurcation meets the stable branch involving self-interrupted dynamics in a turning point bifurcation. The tool displacement at that turning point is estimated, which helps identify cutting parameter ranges where loss of stability leads to much larger self-interrupted motions than in some other ranges. Numerical bounds are also obtained on the parameter values which guarantee global stability of steady-state cutting, i.e., parameter values for which there exist neither unstable periodic motions nor self-interrupted motions about the stable equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present self assessment schemes (SAS) for multiple agents performing a search mission on an unknown terrain. The agents are subjected to limited communication and sensor ranges. The agents communicate and coordinate with their neighbours to arrive at route decisions. The self assessment schemes proposed here have very low communication and computational overhead. The SAS also has attractive features like scalability to large number of agents and fast decision-making capability. SAS can be used with partial or complete information sharing schemes during the search mission. We validate the performance of SAS using simulation on a large search space consisting of 100 agents with different information structures and self assessment schemes. We also compare the results obtained using SAS with that of a previously proposed negotiation scheme. The simulation results show that the SAS is scalable to large number of agents and can perform as good as the negotiation schemes with reduced communication requirement (almost 20% of that required for negotiation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses a search problem with multiple limited capability search agents in a partially connected dynamical networked environment under different information structures. A self assessment-based decision-making scheme for multiple agents is proposed that uses a modified negotiation scheme with low communication overheads. The scheme has attractive features of fast decision-making and scalability to large number of agents without increasing the complexity of the algorithm. Two models of the self assessment schemes are developed to study the effect of increase in information exchange during decision-making. Some analytical results on the maximum number of self assessment cycles, effect of increasing communication range, completeness of the algorithm, lower bound and upper bound on the search time are also obtained. The performance of the various self assessment schemes in terms of total uncertainty reduction in the search region, using different information structures is studied. It is shown that the communication requirement for self assessment scheme is almost half of the negotiation schemes and its performance is close to the optimal solution. Comparisons with different sequential search schemes are also carried out. Note to Practitioners-In the futuristic military and civilian applications such as search and rescue, surveillance, patrol, oil spill, etc., a swarm of UAVs can be deployed to carry out the mission for information collection. These UAVs have limited sensor and communication ranges. In order to enhance the performance of the mission and to complete the mission quickly, cooperation between UAVs is important. Designing cooperative search strategies for multiple UAVs with these constraints is a difficult task. Apart from this, another requirement in the hostile territory is to minimize communication while making decisions. This adds further complexity to the decision-making algorithms. In this paper, a self-assessment-based decision-making scheme, for multiple UAVs performing a search mission, is proposed. The agents make their decisions based on the information acquired through their sensors and by cooperation with neighbors. The complexity of the decision-making scheme is very low. It can arrive at decisions fast with low communication overheads, while accommodating various information structures used for increasing the fidelity of the uncertainty maps. Theoretical results proving completeness of the algorithm and the lower and upper bounds on the search time are also provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a derivation of the adjoint low Mach number equations and their implementation and validation within a global mode solver. The advantage of using the low Mach number equations and their adjoints is that they are appropriate for flows with variable density, such as flames, but do not require resolution of acoustic waves. Two versions of the adjoint are implemented and assessed: a discrete-adjoint and a continuous-adjoint. The most unstable global mode calculated with the discrete-adjoint has exactly the same eigenvalue as the corresponding direct global mode but contains numerical artifacts near the inlet. The most unstable global mode calculated with the continuous-adjoint has no numerical artifacts but a slightly different eigenvalue. The eigenvalues converge, however, as the timestep reduces. Apart from the numerical artifacts, the mode shapes are very similar, which supports the expectation that they are otherwise equivalent. The continuous-adjoint requires less resolution and usually converges more quickly than the discrete-adjoint but is more challenging to implement. Finally, the direct and adjoint global modes are combined in order to calculate the wavemaker region of a low density jet. © 2011 Elsevier Inc.