343 resultados para Selenophosphate synthetase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamine synthetase (GS) is a key enzyme in nitrogen (N) assimilation, particularly during seed development. Three cytosolic GS isoforms (HvGS1) were identified in barley (Hordeum vulgare L. cv Golden Promise). Quantitation of gene expression, localization and response to N supply revealed that each gene plays a non-redundant role in different tissues and during development. Localization of HvGS1_1 in vascular cells of different tissues, combined with its abundance in the stem and its response to changes in N supply, indicate that it is important in N transport and remobilization. HvGS1_1 is located on chromosome 6H at 72.54 cM, close to the marker HVM074 which is associated with a major quantitative trait locus (QTL) for grain protein content (GPC). HvGS1_1 may be a potential candidate gene to manipulate barley GPC. HvGS1_2 mRNA was localized to the leaf mesophyll cells, in the cortex and pericycle of roots, and was the dominant HvGS1 isoform in these tissues. HvGS1_2 expression increased in leaves with an increasing supply of N, suggesting its role in the primary assimilation of N. HvGS1_3 was specifically and predominantly localized in the grain, being highly expressed throughout grain development. HvGS1_3 expression increased specifically in the roots of plants grown on high NH+4, suggesting that it has a primary role in grain N assimilation and also in the protection against ammonium toxicity in roots. The expression of HvGS1 genes is directly correlated with protein and enzymatic activity, indicating that transcriptional regulation is of prime importance in the control of GS activity in barley.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphoribosyl pyrophosphate synthetase (PRS-EC:2.7.6.1) is an important enzyme present in several metabolic pathways, thus forming a complex family of isoenzymes. However, plant PRS enzymes have not been extensively investigated. In this study, a sugarcane prs gene has been characterized from the Sugar Cane Expressed Sequence Tag Genome Project. This gene contains a 984-bp open reading frame encoding a 328-amino acid protein. The predicted amino acid sequence has 77% and 78% amino acid sequence identity to Arabidopsis thaliana and Spinacia oleracea PRS4, respectively. The assignment of sugarcane PRS as a phosphate-independent PRS isoenzyme (Class II PRS) is verified following enzyme assay and phylogenetic reconstruction of PRS homologues. To gain further insight into the structural framework of the phosphate independence of sugarcane PRS, a molecular model is described. This model reveals the formation of two conserved domains elucidating the structural features involved in sugarcane PRS phosphate independence. The recombinant PRS retains secondary structure elements and a quaternary arrangement consistent with known PRS homologues, based on circular dichroism measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were performed to (1) verify the inhibitory effect of bovine trophoblast protein-1 (bTP-1) on uterine prostaglandin synthesis, (2) evaluate whether other interferon-alpha (IFN-alpha) molecules also inhibit prostaglandin secretion, and (3) test whether the enzyme 2',5'-oligoadenylate synthetase (2-5A synthetase) can be induced in endometrium by interferon-alpha. In experiment 1, all interferon molecules (bTP-1, oTP-1, bIFN-alpha and hIFN-alpha) equally inhibited secretion of PGF and PGE2 from endometrial explant cultures obtained at day 17 of the estrous cycle. In experiment 2, endometrial explants obtained from day 17 of the cycle were cultured with and without bovine serum albumin (BSA; 50-mu-g/ml) and bIFN-alpha (0, 0.84, 4.2, and 42 nM). Addition of BSA to the culture medium greatly enhanced the accumulation of PGF into the medium. The bIFN-alpha inhibited accumulation of PGF and PGE2 in both the presence or absence of BSA by 12 h. All three concentrations of bIFN-alpha were equally effective in inhibiting prostaglandin accumulation. Additionally, all concentrations of bIFN-alpha increased the amounts of 2-5A synthetase in endometrium. In conclusion, these results confirm the inhibitory effect of bTP-1 on PGF release from endometrium and demonstrate that bTP-1 can also inhibit PGE2 secretion. Furthermore, other interferon-alpha molecules, including bIFN-alpha, hIFN-alpha, and oTP-1, also reduced PGF and PGE2 secretion in culture. It is likely, therefore, that conceptus and other interferon-alpha molecules exert similar effects on endometrium in vitro and that the antiluteolytic effects of bIFN-alpha in vivo are mediated in part by changes in endometrial prostaglandin synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holocarboxylase synthetase (HCS) catalyzes the binding of biotin to lysine (K) residues in histones H3 and H4. Histone biotinylation marks play important roles in the repression of genes and retrotransposons. Preliminary studies suggested that K16 in histone H4 is a target for biotinylation by HCS. Here we demonstrated that H4K16bio is overrepresented in repeat regions {pericentromeric alpha satellite repeats; long terminal repeats (LTR)} compared with euchromatin promoters. H4K16bio was also enriched in the repressed interleukin-2 gene promoter. The enrichment at LTR22 and promoter 1 of the sodium-dependent multivitamin transporter (SMVT) depended on biotin supply; and was significantly lower in fibroblasts from an HCS-deficient patient compared with an HCS wild-type control. We conclude that H4K16bio is a real phenomenon and plays a role in the transcriptional repression of repeats and genes. HCS catalyzes the covalent binding of biotin to carboxylases, in addition to its role as a histone biotinyl ligase. HCS null individuals are not viable whereas HCS deficiency is linked to developmental delays and phenotypes such as short life span and low stress resistance. Here, we developed a 96-well plate assay for high-throughput analysis of HCS based on the detection of biotinylated p67 using IRDye-streptavidin and infrared spectroscopy. We demonstrated that the catalytic activity of rHCS depends on temperature and time, and proposed optimal substrate and enzyme concentrations to ensure ideal measurement of rHCS activity and its kinetics. Additionally, we demonstrated that this assay is sensitive enough to detect biotinylation of p67 by endogenous HCS from Jurkat lymphoid cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatal hyperammonemia secondary to chemotherapy for hematological malignancies or following bone marrow transplantation has been described in few patients so far. In these, the pathogenesis of hyperammonemia remained unclear and was suggested to be multifactorial. We observed severe hyperammonemia (maximum 475 μmol/L) in a 2-year-old male patient, who underwent high-dose chemotherapy with carboplatin, etoposide and melphalan, and autologous hematopoietic stem cell transplantation for a neuroblastoma stage IV. Despite intensive care treatment, hyperammonemia persisted and the patient died due to cerebral edema. The biochemical profile with elevations of ammonia and glutamine (maximum 1757 μmol/L) suggested urea cycle dysfunction. In liver homogenates, enzymatic activity and protein expression of the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) were virtually absent. However, no mutation was found in CPS1 cDNA from liver and CPS1 mRNA expression was only slightly decreased. We therefore hypothesized that the acute onset of hyperammonemia was due to an acquired, chemotherapy-induced (posttranscriptional) CPS1 deficiency. This was further supported by in vitro experiments in HepG2 cells treated with carboplatin and etoposide showing a dose-dependent decrease in CPS1 protein expression. Due to severe hyperlactatemia, we analysed oxidative phosphorylation complexes in liver tissue and found reduced activities of complexes I and V, which suggested a more general mitochondrial dysfunction. This study adds to the understanding of chemotherapy-induced hyperammonemia as drug-induced CPS1 deficiency is suggested. Moreover, we highlight the need for urgent diagnostic and therapeutic strategies addressing a possible secondary urea cycle failure in future patients with hyperammonemia during chemotherapy and stem cell transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell competition is a process by which the slow dividing cells (losers) are recognized and eliminated from growing tissues. Loser cells are extruded from the epithelium and engulfed by the haemocytes, the Drosophila macrophages. However, how macrophages identify the dying loser cells is unclear. Here we show that apoptotic loser cells secrete Tyrosyl-tRNA synthetase (TyrRS), which is best known as a core component of the translational machinery. Secreted TyrRS is cleaved by matrix metalloproteinases generating MiniTyr and EMAP fragments. EMAP acts as a guiding cue for macrophage migration in the Drosophila larvae, as it attracts the haemocytes to the apoptotic loser cells. JNK signalling and Kish, a component of the secretory pathway, are autonomously required for the active secretion of TyrRS by the loser cells. Altogether, this mechanism guarantees effective removal of unfit cells from the growing tissue.