994 resultados para Seedling development


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physic nut can be propagated asexually or sexually. Using cuttings have been earlier yield and more fidelity characteristics of the parent plant. However, there is less initial vegetative growth. The seeds from the plants have increased genetic variability, are more vigorous and begin production later. To get quality changes, the substrate is an important factor. With that the objective was to taste pre-germinated treatments and different substrate on seeds emergence and quality physic nut seedlings. The experimental design was completely randomized, in factorial scheme 6 x 3 (pre-germinated treatments x substrate), 18 treatments and 4 repetition, 8 seeds to each repetition. It was evaluated six pre-germination treatments: T1: witness (without treatments); T2: water immersion for 12 hours; T3: water immersion for 24 hours; T4: mechanical scarification; T5: mechanical scarification + water immersion for 12 hours; T6: mechanical scarification + water immersion for 24 hours, using as substrate: commercial, expanded vermiculite and sand washed. The mechanical scarification was realized opposite the micropyle using sandpaper n. 60. After the pre-germination treatments, the seeds were emergence in plastic cups (200mL) with substrates. We evaluated the characteristics: percentage, beginning and emergence speed index, mean length of plant, diameter of plant stem, SPAD index, fresh and dry shoot and root. The results showed that in seeds of Jatropha do not need pre-germinative treatments; and the use of commercial substrate showed seedling development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An HPLC/GC–MS/MS technique (high-pressure liquid chromatography in combination with gas chromatography–tandem mass spectrometry) has been worked out to analyze indole-3-acetamide (IAM) with very high sensitivity, using isotopically labelled IAM as an internal standard. Using this technique, the occurrence of IAM in sterile-grown Arabidopsis thaliana (L.) Heynh. was demonstrated unequivocally. In comparison, plants grown under non-sterile conditions in soil in a greenhouse showed approximately 50% higher average levels of IAM, but the differences were not statistically significant. Thus, microbial contributions to the IAM extracted from the tissue are likely to be minor. Levels of IAM in sterile-grown seedlings were highest in imbibed seeds and then sharply declined during the first 24 h of germination and further during early seedling development to remain below 20–30 pmol g–1 fresh weight throughout the rosette stage. The decline in indole-3-aetic acid (IAA) levels during germination was paralleled by a similar decline in IAM levels. Recombinant nitrilase isoforms 1, 2 and 3, known to synthesize IAA from indole-3-acetonitrile, were shown to produce significant amounts of IAM in vitro as a second end product of the reaction besides IAA. NIT2 was earlier shown to be highly expressed in developing and in mature A. thaliana embryos, and NIT3 is the dominantly active gene in the hypocotyl and the cotyledons of young, germinating seedlings. Collectively, these data suggest that the elevated levels of IAM in seeds and germinating seedlings result from nitrilase action on indole-3-acetonitrile, a metabolite produced in the plants presumably from glucobrassicin turnover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expression of desacetoxyvindoline 4-hydroxylase (D4H), which catalyzes the second to the last reaction in vindoline biosynthesis in Catharanthus roseus, appears to be under complex, multilevel developmental and light regulation. Developmental studies with etiolated and light-treated seedlings suggested that although light had variable effects on the levels of d4h transcripts, those of D4H protein and enzyme activity could be increased, depending on seedling development, up to 9- and 8-fold, respectively, compared with etiolated seedlings. However, light treatment of etiolated seedlings could stop and reverse the decline of d4h transcripts at later stages of seedling development. Repeated exposure of seedlings to light was also required to maintain the full spectrum of enzyme activity observed during seedling development. Further studies showed that a photoreversible phytochrome appeared to be involved in the activation of D4H, since red-light treatment of etiolated seedlings increased the detectable levels of d4h transcripts, D4H protein, and D4H enzyme activity, whereas far-red-light treatment completely reversed this process. Additional studies also confirmed that different major isoforms of D4H protein exist in etiolated (isoelectric point, 4.7) and light-grown (isoelectric point, 4.6) seedlings, suggesting that a component of the light-mediated activation of D4H may involve an undetermined posttranslational modification. The biological reasons for this complex control of vindoline biosynthesis may be related to the need to produce structures that could sequester away from cellular activities the cytotoxic vinblastine and vincristine dimers that are derived partially from vindoline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biosynthesis of sucrose from triacylglycerol requires the bypass of the CO2-evolving reactions of the tricarboxylic acid (TCA) cycle. The regulation of the TCA cycle bypass during lipid mobilization was examined. Lipid mobilization in Brassica napus was initiated shortly after imbibition of the seed and proceeded until 2 d postimbibition, as measured by in vivo [1-14C]acetate feeding to whole seedlings. The activity of NAD+-isocitrate dehydrogenase (a decarboxylative enzyme) was not detected until 2 d postimbibition. RNA-blot analysis of B. napus seedlings demonstrated that the mRNA for NAD+-isocitrate dehydrogenase was present in dry seeds and that its level increased through the 4 d of the experiment. This suggested that NAD+-isocitrate dehydrogenase activity was regulated by posttranscriptional mechanisms during early seedling development but was controlled by mRNA level after the 2nd or 3rd d. The activity of fumarase (a component of the nonbypassed section of the TCA cycle) was low but detectable in B. napus seedlings at 12 h postimbibition, coincident with germination, and increased for the next 4 d. RNA-blot analysis suggested that fumarase activity was regulated primarily by the level of its mRNA during germination and early seedling development. It is concluded that posttranscriptional regulation of NAD+-isocitrate dehydrogenase activity is one mechanism of restricting carbon flux through the decarboxylative section of the TCA cycle during lipid mobilization in germinating oilseeds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A silent transgene in Arabidopsis thaliana was reactivated in an outcross but not upon selfing of hemizygous plants. This result could only be explained by assuming a genetic difference between the transgene-free gametes of the wild-type and hemizygous transgenic plants, respectively, and led to the discovery of ploidy differences between the parental plants. To investigate whether a change of ploidy by itself can indeed influence gene expression, we performed crosses of diploid or tetraploid plants with a strain containing a single copy of a transgenic resistance gene in an active state. We observed reduced gene expression of the transgene in triploid compared with diploid hybrids. This led to loss of the resistant phenotype at various stages of seedling development in part of the population. The gene inactivation was reversible. Thus, an increased number of chromosomes can result in a new type of epigenetic gene inactivation, creating differences in gene expression patterns. We discuss the possible impact of this finding for genetic diploidization in the light of widespread, naturally occurring polyploidy and polysomaty in plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In early seedling development, far-red-light-induced deetiolation is mediated primarily by phytochrome A (phyA), whereas red-light-induced deetiolation is mediated primarily by phytochrome B (phyB). To map the molecular determinants responsible for this photosensory specificity, we tested the activities of two reciprocal phyA/phyB chimeras in diagnostic light regimes using overexpression in transgenic Arabidopsis. Although previous data have shown that the NH2-terminal halves of phyA and phyB each separately lack normal activity, fusion of the NH2-terminal half of phyA to the COOH-terminal half of phyB (phyAB) and the reciprocal fusion (phyBA) resulted in biologically active phytochromes. The behavior of these two chimeras in red and far-red light indicates: (i) that the NH2-terminal halves of phyA and phyB determine their respective photosensory specificities; (ii) that the COOH-terminal halves of the two photoreceptors are necessary for regulatory activity but are reciprocally inter-changeable and thus carry functionally equivalent determinants; and (iii) that the NH2-terminal halves of phyA and phyB carry determinants that direct the differential light lability of the two molecules. The present findings suggest that the contrasting photosensory information gathered by phyA and phyB through their NH2-terminal halves may be transduced to downstream signaling components through a common biochemical mechanism involving the regulatory activity of the COOH-terminal domains of the photoreceptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a protease, named "thiocalsin," that is activated by calcium but only after reductive activation by thioredoxin, a small protein with a redox-active disulfide group that functions widely in regulation. Thiocalsin appeared to be a 14-kDa serine protease that functions independently of calmodulin. The enzyme, purified from germinating wheat grain, specifically cleaved the major indigenous storage proteins, gliadins and glutenins, after they too had been reduced, preferentially by thioredoxin. The disulfide groups of the enzyme, as well as its protein substrates, were reduced by thioredoxin via NADPH and the associated enzyme, NADP-thioredoxin reductase. The results broaden the roles of thioredoxin and calcium and suggest a joint function in activating thiocalsin, thereby providing amino acids for germination and seedling development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways.