971 resultados para Seeders-fertilizer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the manufacture of granular NPK fertilizer the product is cooled before packaging and storage in moisture-proof bags. It has been shown that the temperature of the fertilizer prior to packing is significant in that at high temperatures, drying of the granules takes place in the bag which causes an increase in the humidity of the air surrounding the granules and thus an increase in moisture content at the granule - granule interface. This surface moisture was shown to increase the likelihood of agglomeration in the fertilizer by a capillary adhesion/unconfined yield stress model. An iterative model was set up to establish conditions that would prevent drying occurring, which takes into account fertilizer drying rate, fertilizer cooling rate cooling rate and the effect of coating oils on the drying mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This laboratory experiment systematically examines arsenic, iron, and phosphorus solubilities in soil suspensions as affected by addition of phosphorus fertilizer under different redox potential (Eh) and pH conditions. Under aerobic conditions, As solubility was low, however, under moderately reducing conditions (0, -150 mV), As solubility significantly increased due to dissolution of iron oxy-hydroxides. Upon reduction to -250 mV, As solubility was controlled by the formation of insoluble sulfides, and as a result soluble As contents significantly decreased. Soluble Fe concentration increased from moderate to highly anaerobic conditions; however, it decreased under aerobic conditions likely due to formation of insoluble oxy-hydroxides. A low pH, 5.5, led to increased soluble concentrations of As, Fe, and P. Finally, addition of P-fertilizers resulted in higher soluble P and As, even though the concentration of As did not increased after an addition rate of 600 mg P kg(-1) soil. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type and rate of fertilizers influence the level of soil organic carbon (Corg) and total nitrogen (Nt) markedly, but the effect on C and N partitioning into different pools is open to question. The objectives of the present work were to: (i) quantify the impact of fertilizer type and rate on labile, intermediate and passive C and N pools by using a combination of biological, chemical and mathematical methods; (ii) explain previously reported differences in the soil organic matter (SOM) levels between soils receiving farmyard manure with or without biodynamic preparations by using Corg time series and information on SOM partitioning; and (iii) quantify the long-term and short-term dynamics of SOM in density fractions and microbial biomass as affected by fertilizer type and rate and determine the incorporation of crop residues into labile SOM fractions. Samples were taken from a sandy Cambisol from the long-term fertilization trial in Darmstadt, Germany, founded in 1980. The nine treatments (four field replicates) were: straw incorporation plus application of mineral fertilizer (MSI) and application of rotted farmyard manure with (DYN) or without (FYM) addition of biodynamic preparations, each at high (140 – 150 kg N ha-1 year-1; MSIH, DYNH, FYMH), medium (100 kg N ha-1 year-1; MSIM, DYNM, FYMM) and low (50 – 60 kg N ha-1 year-1; MSIL, DYNL, FYML) rates. The main findings were: (i) The stocks of Corg (t ha-1) were affected by fertilizer type and rate and increased in the order MSIL (23.6), MSIM (23.7), MSIH (24.2) < FYML (25.3) < FYMM (28.1), FYMH (28.1). Stocks of Nt were affected in the same way (C/N ratio: 11). Storage of C and N in the modelled labile pools (turnover times: 462 and 153 days for C and N, respectively) were not influenced by the type of fertilizer (FYM and MSI) but depended significantly (p ≤ 0.05) on the application rate and ranged from 1.8 to 3.2 t C ha 1 (7 – 13% of Corg) and from 90 to 140 kg N ha-1 (4-5% of Nt). In the calculated intermediate pool (C/N ratio 7), stocks of C were markedly higher in FYM treatments (15-18 t ha-1) compared to MSI treatments (12-14 t ha-1). This showed that differences in SOM stocks in the sandy Cambisol induced by fertilizer rate may be short-lived in case of changing management, but differences induced by fertilizer type may persist for decades. (ii) Crop yields, estimated C inputs (1.5 t ha-1 year-1) with crop residue, microbial bio¬mass C (Cmic, 118 – 150 mg kg-1), microbial biomass N (17 – 20 mg kg-1) and labile C and N pools did not differ significantly between FYM and DYN treatments. However, labile C increased linearly with application rate (R2 = 0.53) from 7 to 11% of Corg. This also applied for labile N (3.5 to 4.9% of Nt). The higher contents of Corg in DYN treatments existed since 1982, when the first sampling was conducted for all individual treatments. Contents of Corg between DYN and FYM treatments con-verged slightly since then. Furthermore, at least 30% of the difference in Corg was located in the passive pool where a treatment effect could be excluded. Therefore, the reported differences in Corg contents existed most likely since the beginning of the experiment and, as a single factor of biodynamic agriculture, application of bio-dynamic preparations had no effect on SOM stocks. (iii) Stocks of SOM, light fraction organic C (LFOC, ρ ≤ 2.0 g cm-3), light fraction organic N and Cmic decreased in the order FYMH > FYML > MSIH, MSIL for all sampling dates in 2008 (March, May, September, December). However, statistical significance of treatment effects differed between the dates, probably due to dif-ferences in the spatial variation throughout the year. The high proportion of LFOC on total Corg stocks (45 – 55%) highlighted the importance of selective preservation of OM as a stabilization mechanism in this sandy Cambisol. The apparent turnover time of LFOC was between 21 and 32 years, which agreed very well with studies with substantially longer vegetation change compared to our study. Overall, both approaches; (I) the combination of incubation, chemical fractionation and simple modelling and (II) the density fractionation; provided complementary information on the partitioning of SOM into pools of different stability. The density fractionation showed that differences in Corg stocks between FYM and MSI treatments were mainly located in the light fraction, i.e. induced by higher recalcitrance of the organic input in the FYM treatments. Moreover, the use of the combination of biological, chemical and mathematical methods indicated that effects of fertilizer rate on total Corg and Nt stocks may be short-lived, but that the effect of fertilizer type may persist for longer time spans in the sandy Cambisol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GEFSOC Project developed a system for estimating soil carbon (C) stocks and changes at the national and sub-national scale. As part of the development of the system, the Century ecosystem model was evaluated for its ability to simulate soil organic C (SOC) changes in environmental conditions in the Indo-Gangetic Plains, India (IGP). Two long-term fertilizer trials (LTFT), with all necessary parameters needed to run Century, were used for this purpose: a jute (Corchorus capsularis L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) trial at Barrackpore, West Bengal, and a rice-wheat trial at Ludhiana, Punjab. The trials represent two contrasting climates of the IGP, viz. semi-arid, dry with mean annual rainfall (MAR) of < 800 mm and humid with > 1600 turn. Both trials involved several different treatments with different organic and inorganic fertilizer inputs. In general, the model tended to overestimate treatment effects by approximately 15%. At the semi-arid site, modelled data simulated actual data reasonably well for all treatments, with the control and chemical N + farm yard manure showing the best agreement (RMSE = 7). At the humid site, Century performed less well. This could have been due to a range of factors including site history. During the study, Century was calibrated to simulate crop yields for the two sites considered using data from across the Indian IGP. However, further adjustments may improve model performance at these sites and others in the IGP. The availability of more longterm experimental data sets (especially those involving flooded lowland rice and triple cropping systems from the IGP) for testing and validation is critical to the application of the model's predictive capabilities for this area of the Indian sub-continent. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term indicators of soil fertility were assessed by measuring grain yield, soil organic carbon (SOC) and soil Olsen phosphorous for a P-deficient soil. In one set of treatments, goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1), and intercrops of sorghum/cowpea, millet/green gram and maize/pigeonpea were grown. Yield depended on rainfall and trends with time were not identifiable. Manure caused an upward trend in SOC, but 10 t ha(-1) manure did not give significantly more SOC than 5 t ha(-1). Only 10 t ha(-1) manure increased Olsen P. Measurements of both SOC and Olsen P are recommended. In another set of treatments, manure was applied for four years; the residual effect lasted another seven to eight years when assessed by yield, SOC and Olsen P Treatment with mineral fertilizers provided the same rates of N and P as 5 t hat manure and yields from manure and fertilizer were similar. Fertilizer increased Olsen P but not SOC. Management systems with occasional manure application and intermediate fertilizer applications should be assessed. Inputs and offtakes of C, N and P were measured for three years. Approximately 16, 25 and 11% of C, N and P respectively were stabilized into soil organic matter from 5 t ha(-1) a(-1) manure. The majority of organic P was fixed as soil inorganic P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of irrigation and nitrogen (N) fertilizer on Hagberg falling number (HFN), specific weight (SW) and blackpoint (BP) of winter wheat (Triticum aestivum L) were investigated. Mains water (+50 and +100 mm month(-1), containing 44 mg NO3- litre(-1) and 28 mg SO42- litre(-1)) was applied with trickle irrigation during winter (17 January-17 March), spring (21 March-20 May) or summer (24 May-23 July). In 1999/2000 these treatments were factorially combined with three N levels (0, 200, 400 kg N ha(-1)), applied to cv Hereward. In 2000/01 the 400 kg N ha(-1) treatment was replaced with cv Malacca given 200 kg N ha(-1). Irrigation increased grain yield, mostly by increasing grain numbers when applied in winter and spring, and by increasing mean grain weight when applied in summer. Nitrogen increased grain numbers and SW, and reduced BP in both years. Nitrogen increased HFN in 1999/2000 and reduced HFN in 2000/01. Effects of irrigation on HFN, SW and BP were smaller and inconsistent over year and nitrogen level. Irrigation interacted with N on mean grain weight: negatively for winter and spring irrigation, and positively for summer irrigation. Ten variables derived from digital image analysis of harvested grain were included with mean grain weight in a principal components analysis. The first principal component ('size') was negatively related to HFN (in two years) and BP (one year), and positively related to SW (two years). Treatment effects on dimensions of harvested grain could not explain all of the effects on HFN, BP and SW but the results were consistent with the hypothesis that water and nutrient availability, even when they were affected early in the season, could influence final grain quality if they influenced grain numbers and size. (C) 2004 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field experiments were carried out to assess the effects of nitrogen fertilization and seed rate on the Hagberg falling number (HFN) of commercial wheat hybrids and their parents. Applying nitrogen (200 kg N ha(-1)) increased HFN in two successive years. The HFN of the hybrid Hyno Esta was lower than either of its parents (Estica and Audace), particularly when nitrogen was not applied. Treatment effects on HFN were negatively associated with a-amylase activity. Phadebas grain blotting suggested two populations of grains with different types of a-amylase activity: Estica appeared to have a high proportion of grains with low levels of late maturity endosperm a-amylase activity (LMEA); Audace had a few grains showing high levels of germination amylase; and the hybrid, Hyno Esta, combined the sources from both parents to show heterosis for a-amylase activity. Applying nitrogen reduced both apparent LMEA and germination amylase. The effects on LMEA were associated with the size and disruption of the grain cavity, which was greater in Hyno Esta and Estica and in zero-nitrogen treatments. External grain morphology failed to explain much of the variation in LMEA and cavity size, but there was a close negative correlation between cavity size and protein content. Applying nitrogen increased post-harvest dormancy of the grain. Dormancy was greatest in Estica and least in Audace. It is proposed that effects of seed rate, genotype and nitrogen fertilizer on HFN are mediated through factors affecting the size and disruption of the grain cavity and therefore LMEA, and through factors affecting dormancy and therefore germination amylase. (c) 2004 Society of Chemical Industry.