991 resultados para Sediment concentration
Resumo:
Sediment oxygen demand (SOD) can be a significant oxygen sink in various types of water bodies, particularly slow-moving waters with substantial organic sediment accumulation. In most settings where SOD is a concern, the prevailing hydraulic conditions are such that the impact of sediment resuspension on SOD is not considered. However, in the case of Bubbly Creek in Chicago, Illinois, the prevailing slack water conditions are interrupted by infrequent intervals of very high flow rates associated with pumped combined sewer overflow (CSO) during intense hydrologic events. These events can cause resuspension of the highly organic, nutrient-rich bottom sediments, resulting in precipitous drawdown of dissolved oxygen (DO) in the water column. While many past studies have addressed the dependence of SOD on near-bed velocity and bed shear stress prior to the point of sediment resuspension, there has been limited research that has attempted to characterize the complex and dynamic phenomenon of resuspended-sediment oxygen demand. To address this issue, a new in situ experimental apparatus referred to as the U of I Hydrodynamic SOD Sampler was designed to achieve a broad range of velocities and associated bed shear stresses. This allowed SOD to be analyzed across the spectrum of no sediment resuspension associated with low velocity/ bed shear stress through full sediment resuspension associated with high velocity / bed shear stress. The current study split SOD into two separate components: (1) SODNR is the sediment oxygen demand associated with non-resuspension conditions and is a surface sink calculated using traditional methods to yield a value with units (g/m2/day); and (2) SODR is the oxygen demand associated with resuspension conditions, which is a volumetric sink most accurately characterized using non-traditional methods and units that reflect suspension in the water column (mg/L/day). In the case of resuspension, the suspended sediment concentration was analyzed as a function of bed shear stress, and a formulation was developed to characterize SODR as a function of suspended sediment concentration in a form similar to first-order biochemical oxygen demand (BOD) kinetics with Monod DO term. The results obtained are intended to be implemented into a numerical model containing hydrodynamic, sediment transport, and water quality components to yield oxygen demand varying in both space and time for specific flow events. Such implementation will allow evaluation of proposed Bubbly Creek water quality improvement alternatives which take into account the impact of SOD under various flow conditions. Although the findings were based on experiments specific to the conditions in Bubbly Creek, the techniques and formulations developed in this study should be applicable to similar sites.
Resumo:
ExperimentS were conducted to find the effects of seepage on flow over a sand bed in a straight rectangular flume under two conditions: (1) When the channel bed is plane, horizontal, and nontransporting; and (2) when the bed is transporting at a constant sediment concentration. Effects of both injection and suction, caused by seepage flow into and out of the channel bed, are studied for condition 1; and only suction effects are studied for condition 2, Three sands, sizes 0.34 mm, 0.53 mm, and 0.80 mm, are used in the study. It is found that seepage can cause an increase or decrease in the bed shear stress relative to no seepage for the two conditions. The change in bed shear stress depends on the relative magnitudes of the bed shear stress and the critical shear stress of particles under the no-seepage condition, sediment concentration, and the seepage rate. Quantitative relationships giving the ratio of bed shear stresses with and without seepage are presented for both conditions of the bed. A procedure to estimate the changes in bed shear stress, friction factor, Manning's n, and stream power due to seepage for known initial conditions of the channel and the amount of applied seepage is presented
Resumo:
An equilibrium equation for the turbulence energy in sediment-laden flows was derived on the basis of solid-liquid two-phase flow theory. The equation was simplified for two-dimensional, uniform, steady and fully developed turbulent hyperconcentrated flows. An energy efficiency coefficient of suspended-load motion was obtained from the turbulence energy equation, which is defined as the ratio of the sediment suspension energy to the turbulence energy of the sediment-laden flows. Laboratory experiments were conducted to investigate the characteristics of energy dissipation in hyperconcentrated flows. A total of 115 experimental runs were carried out, comprising 70 runs with natural sediments and 45 runs with cinder powder. Effects of sediment concentration on sediment suspension energy and flow resistance were analyzed and the relation between the energy efficiency coefficient of suspended-load motion and sediment concentration was established on the basis of experimental data. Furthermore, the characteristics of energy dissipation in hyperconcentrated flows were identified and described. It was found that the high sediment concentration does not increase the energy dissipation; on the contrary, it decreases flow resistance.
Resumo:
The siltation of an experimental gravel bed, with three grades of sand moving in suspension and as bedload, was examined. The rate of infiltration of sand into the void space of the gravel was determined under differing conditions of discharge, water depth, and velocity (jointly expressed as variation in the Froude Number) and suspended sediment concentration. The downstream reduction in siltation from the point source was also examined.
Resumo:
The Amazon river, located in northernBrazil, discharges between 80,000 and 250,000 m3s-1 of water onto the adjacent shelf, creating a plume of brackish water that extends hundreds of kilometers away from the river mouth. This river also carries a large amount of fine sediments to the ocean where fluid mud has been found in the topset and upper foreset layers of the subaqueous delta formed on the mid-shelf. One of the main goals of this dissertation is to describe how turbulence and suspended sediment concentration vary along the Northern Channel of the Amazon river. Water column measurements were carried out in October 2008 at six anchor stations (P1, P3, P5, P6, P8 e P9) located seaward of the river mouth; P1 and P9 were 125 km apart. Each station was occupied during 13 hours during which current speed and direction were continuously sampled with a 600 kHz Teledyne-RDI ADCP; hourly profiles of temperature, salinity, turbidity and depth were also obtained. Water samples were collected for determination of Suspended Particulate Matter (SPM) concentration and calibration of the turbidity sensor. Current speed reached values above 1.5 m s1 in the along-channel direction (NE-SW); a remarkable ebb-flood asymmetry was observed and flows were strongly ebb-dominated. Throughout the water column, SPM concentration at stations P1 and P3 varied between 100 and 300 mg L1 in association with the presence of freshwater. In contrast, a strong salinity gradient was observed between stations P6 and P9, coinciding with the occurrence of concentrations of SPM above 10 g L-1 (fluid mud). At stations P3, P5 and P6, interface between freshwater from the Amazon river and salt water from the continental shelf, shear stresses wereestimated through four diferents methods: Reynolds, Turbulent Kinetic Energy (TKE), modified TKE and Quadratic Law; in the nearbed region (3 mab) the computed values varied between 0 and 3 Pa. At the three stations (P3, P5 and P6) the lowest and the highest shear stress values were obtained through, respectively, the Reynolds and the TKE methods. Over the whole water column turbulence intensity was estimated through the standard deviation of the turbulent component of the along-channel current velocity (root-mean square of u); from these values, it was estimated the turbulent dissipation of energy (G), whose values at 3 mab varied between zero and 20 s1.
Resumo:
Este estudo teve como objetivo principal caracterizar os padrões de distribuição do material particulado em suspensão ao longo da baía de Sepetiba, associando as variabilidades espaciais e temporais com ciclos de maré. Além disso, o estudo também avalia a utilização de equipamentos acústicos como ferramentas à estimativa das concentrações de material particulado em suspensão. A aquisição de dados foi realizada num total de sete campanhas realizadas entre novembro de 2010 e dezembro de 2011. Sete estações foram posicionadas nas proximidades do canal principal de acesso à baía, ao longo de um transecto que se estende do seu interior até sua desembocadura. As sete campanhas amostrais se distribuem em duas séries longas, de 13 e 25 horas, de aquisição em um ponto fixo, e cinco amostragens ao longo das estações. A aquisição de dados envolve: coleta de amostras de água, utilizadas nas estimativas das concentrações de material particulado; coleta de sedimentos de fundo para caracterização granulométrica das estações amostradas; perfis de parâmetros físico-químicos; dados de correntômetria adquiridos junto ao fundo. O processamento das amostras de água e sedimentos foi realizado no laboratório de Geologia Marinha da Faculdade de Oceanografia da Universidade do Estado do Rio de Janeiro. As concentrações de material particulado em suspensão foram utilizadas na calibração de sensores acústicos e óticos, permitindo uma avaliação espaço-temporal mais detalhada dos padrões de distribuição junto ao fundo e ao longo da coluna dágua. Os dados observados permitiram identificar que as maiores concentrações de material particulado em suspensão ocorrem em condições de maré enchente, e estão associadas à assimetria de maré. A baía pode ser dividida em dois setores: um na porção mais interna, onde se observou maior influência do aporte fluvial, onde as concentrações de material particulado em suspensão respondem à propagação da pluma do canal de São Francisco; e outro que se estende da porção central até sua desembocadura, onde predomina o domínio marinho, com influência de eventos oriundos da plataforma continental. Também pode ser identificada a influência do fenômeno La Niña, que provavelmente foi responsável por: altas salinidades encontradas no interior da baía e ocorrência da Água Central do Atlântico Sul à baixas profundidades. Quanto à utilização de equipamentos acústicos nas estimativas das concentrações de material particulado, os dados se demonstraram ricos em detalhes, que permitiram avaliar o comportamento do material particulado junto ao fundo frente a diferentes condições de maré, turbulência e incidência de oscilações.
Resumo:
A laboratory study of the rheology of mudflows in Hangzhou Bay, China, is reported in this paper. Both the steady and oscillatory (dynamic) rheological properties are studied using RMS-605 rheometer. A Dual-Bingham model is proposed for analyzing flow curves and compared with Worrall-Tuliani model. It is found that Dual-Bingham plastic rheological model is easier to implement than Worrall-Tuliani model and can provide satisfactory representations of the steady mudflows in Hangzhou Bay and other published data. The dependence of the yield stress and viscosity on sediment concentration is discussed based on the data from Hangzhou Bay mud and other published data. For the dynamic rheological properties of Hangzhou Bay mud, empirical expressions for elastic modulus and dynamic viscosity are provided in the form of exponential functions of sediment volume concentration, and comparisons with other published data also discussed.
Resumo:
盐度等因素对泥沙絮凝沉降的影响是本文的研究目的.考虑了泥沙颗粒在水中的多体相互作用, 以及颗粒间的XDLVO势.分析了盐度、泥沙浓度、Hamaker常数、水合作用对泥沙絮凝沉降的影响.获得的泥沙絮凝沉降速度的拟合公式与计算和试验相符, 对于工程实际有重要参考意义
Resumo:
采用延河甘谷驿水文站控制区1965-2002年降水量、径流量和输沙量资料,分析了人类活动对河流水沙变化的影响。与以往以年代为基准期的分段方法不同,本研究根据河流含沙量距平累计值变化特征,把延河水沙变化过程划分为5个时段,并以含沙量持续较高的时段Ⅰ(1965-1971年)为基期,分析了各时段径流量和输沙量的变化特征。以基期单位降水产沙量和产流量为参数,计算了各时段全年和汛期的计算输沙量和径流量。通过比较计算和实测的输沙量和径流量,分析了各时段人类活动对全年和汛期输沙量和径流量的影响。研究表明,根据含沙量距平累计值划分时段可以更好反映河流水沙变化特征:治理期人类活动平均减少年和汛期输沙量分别约50.3%和40.0%;而减少年和汛期径流量的幅度分别约为19.8%和34.2%。人类活动在时段Ⅱ(1971-1976年)和时段Ⅴ(1997-2001年)对水沙的影响较大,而在时段Ⅳ(1987-1996年)影响较小,且表现复杂。
Resumo:
细颗粒泥沙的絮凝或分散对土壤渗透性、土壤可蚀性有重要作用 ,是水土保持研究的重要内容。在 Ca Cl2 浓度为 0~ 1.0 mmol/L ,泥沙浓度为 10 g/L时 ,用吸管法研究了 Ca Cl2 对细颗粒泥沙絮凝沉降的影响。结果表明 :泥沙沉降分 2个阶段 ,分选沉降段和絮凝沉降段 ;在絮凝沉降段 ,Ca Cl2 浓度越大 ,絮凝沉降越快。但较高浓度时 ,细颗粒泥沙平均沉速反而随 Ca Cl2浓度增大而逐渐减小 ;泥沙浓度随时间呈指数衰减 ;细颗粒泥沙絮凝临界粒径为 0 .0 3mm。
Resumo:
在CaCl2和MgCl2浓度为0~1.0mmol/L,泥沙浓度为10g/L时,用吸管法研究了有机质、CaCl2和MgCl2对细颗粒泥沙静水絮凝沉降的影响,结果表明,去除有机质后,细颗粒泥沙絮凝沉降加快,其絮凝所需的最佳电解质浓度降低;CaCl2和MgCl2的絮凝能力无明显差异,有机质含量对其几乎没有影响;在相同盐度下,细颗粒泥沙的絮凝沉降速度随电解质摩尔浓度的增大而增大.
Resumo:
土壤剥蚀是指由侵蚀动力引起的土壤颗粒从土壤母质移动的过程。细沟剥蚀土粒随着细沟股流中含沙量的增加而减少 ,已有的一些侵蚀模型 (如 WEPP)均提到了这一点。用黄土高原一种典型的粉壤土 ,在 5种坡度、3种流量下进行了细沟侵蚀模拟试验。对试验结果进行了回归 ,分析了黄土高原斜坡及陡坡地、细沟股流剥蚀率随含沙量以及沟长变化的函数关系。这对细沟侵蚀动力过程的研究深入 ,以及对侵蚀过程的预测预报提供了有力的参考依据
Resumo:
铝类絮凝剂对细颗粒泥沙絮凝沉降有重要作用 ,常应用于浑水澄清、农业污水处理等研究中。在AlCl3 浓度为 0~ 1 7mmol/L ,泥沙浓度为 1 0g/L时 ,用吸管法研究了AlCl3 对细颗粒泥沙絮凝沉降的影响 ,结果表明 :在液面下同一深度 ,泥沙浓度随时间呈指数衰减 ;悬液经多次搅拌后再沉降 ,其沉速减缓 ;当AlCl3 浓度为 0 9~ 1 7mmol/L时 ,出现明显的清浑水交界面 ,交界面随时间等速下降 ,平均沉速为 4 75 6cm/min ,对应的絮团平均粒径为 0 0 31 5mm ;土娄土絮凝临界粒径为 0 0 2 7mm。
Resumo:
该文介绍一种解析方法 ,由细沟剥蚀率与含沙量关系以及剥蚀率与水流含沙量及沟长的微分物理表达式 ,推求出了含沙量与沟长关系数学表达式。提出了一种侵蚀细沟含沙量量化计算的新方法。并将用该方法计算得到的两种流量下细沟水流含沙量结果与由试验值进行了比较 ,结果表明 :两者相关密切 ,得到的 R2值均很高 ,最低为0 .81,验证了此解析式的有效性。验证了细沟土壤侵蚀的剥蚀率与水流含沙量的关系式的正确性
Resumo:
细沟剥蚀土粒随着细沟股流中含沙量的增加而减少 ,这一概念已在一些侵蚀模型 (如 WEPP)中得到应用。用黄土高原一种典型的粉壤土 ,在 5种坡度 (5°,10°,15°,2 0°,2 5°) ,3种流量 (2 ,4,8L/m in)条件下进行了细沟侵蚀模拟试验 ,试验沟长 0 .5~ 8m。通过 40 5次试验 ,确定了不同坡度、入流量条件下 ,侵蚀产沙量与细沟长度的定量函数关系。在假定细沟径流和土壤侵蚀沿细沟的行为相同条件下 ,提出了一种计算含沙水剥蚀率的方法 ,并进一步表达了细沟剥蚀率随含沙量以及沟长变化的函数关系。实验结果在 15°,2 0°,2 5°时表现出很好的显著性