996 resultados para Secure Sockets Layer (SSL)
Resumo:
This paper presents a secure communication protocol which can be used as the framework for an e-tendering scheme. This protocol is focused on securing the integrity of tendering documents and ensuring that a secure record of document generation is kept. Our protocol provides a mechanism to manage e-tendering contract evidence as a legal record in a unique and effective manner. It is the starting point of reliable record keeping. To a certain extent, it also addresses existing security problems in the traditional tendering processes.
Resumo:
We introduce a formal model for certificateless authenticated key exchange (CL-AKE) protocols. Contrary to what might be expected, we show that the natural combination of an ID-based AKE protocol with a public key based AKE protocol cannot provide strong security. We provide the first one-round CL-AKE scheme proven secure in the random oracle model. We introduce two variants of the Diffie-Hellman trapdoor the introduced by \cite{DBLP:conf/eurocrypt/CashKS08}. The proposed key agreement scheme is secure as long as each party has at least one uncompromised secret. Thus, our scheme is secure even if the key generation centre learns the ephemeral secrets of both parties.
Resumo:
Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. In this paper, a key management scheme is proposed to defeat node capture attack by offering both forward and backward secrecies. Our scheme overcomes the pitfalls which Nilsson et al.'s scheme suffers from, and is not more expensive than their scheme.
Resumo:
In conventional fabrication of ceramic separation membranes, the particulate sols are applied onto porous supports. Major structural deficiencies under this approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We have overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using lager titanate nanofibers and smaller boehmite nanofibers. This yields a radical change in membrane texture. The resulting membranes effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. This reveals a new direction in membrane fabrication.
Resumo:
Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.
Resumo:
Many surveillance applications (object tracking, abandoned object detection) rely on detecting changes in a scene. Foreground segmentation is an effective way to extract the foreground from the scene, but these techniques cannot discriminate between objects that have temporarily stopped and those that are moving. We propose a series of modifications to an existing foreground segmentation system\cite{Butler2003} so that the foreground is further segmented into two or more layers. This yields an active layer of objects currently in motion and a passive layer of objects that have temporarily ceased motion which can itself be decomposed into multiple static layers. We also propose a variable threshold to cope with variable illumination, a feedback mechanism that allows an external process (i.e. surveillance system) to alter the motion detectors state, and a lighting compensation process and a shadow detector to reduce errors caused by lighting inconsistencies. The technique is demonstrated using outdoor surveillance footage, and is shown to be able to effectively deal with real world lighting conditions and overlapping objects.
Resumo:
Abandoned object detection (AOD) systems are required to run in high traffic situations, with high levels of occlusion. Systems rely on background segmentation techniques to locate abandoned objects, by detecting areas of motion that have stopped. This is often achieved by using a medium term motion detection routine to detect long term changes in the background. When AOD systems are integrated into person tracking system, this often results in two separate motion detectors being used to handle the different requirements. We propose a motion detection system that is capable of detecting medium term motion as well as regular motion. Multiple layers of medium term (static) motion can be detected and segmented. We demonstrate the performance of this motion detection system and as part of an abandoned object detection system.
Resumo:
This article presents a survey of authorisation models and considers their ‘fitness-for-purpose’ in facilitating information sharing. Network-supported information sharing is an important technical capability that underpins collaboration in support of dynamic and unpredictable activities such as emergency response, national security, infrastructure protection, supply chain integration and emerging business models based on the concept of a ‘virtual organisation’. The article argues that present authorisation models are inflexible and poorly scalable in such dynamic environments due to their assumption that the future needs of the system can be predicted, which in turn justifies the use of persistent authorisation policies. The article outlines the motivation and requirement for a new flexible authorisation model that addresses the needs of information sharing. It proposes that a flexible and scalable authorisation model must allow an explicit specification of the objectives of the system and access decisions must be made based on a late trade-off analysis between these explicit objectives. A research agenda for the proposed Objective-based Access Control concept is presented.
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
Alzaid et al. proposed a forward & backward secure key management scheme in wireless sensor networks for Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems. The scheme, however, is still vulnerable to an attack called the sandwich attack that can be launched when the adversary captures two sensor nodes at times t1 and t2, and then reveals all the group keys used between times t1 and t2. In this paper, a fix to the scheme is proposed in order to limit the vulnerable time duration to an arbitrarily chosen time span while keeping the forward and backward secrecy of the scheme untouched. Then, the performance analysis for our proposal, Alzaid et al.’s scheme, and Nilsson et al.’s scheme is given.
Resumo:
US state-based data breach notification laws have unveiled serious corporate and government failures regarding the security of personal information. These laws require organisations to notify persons who may be affected by an unauthorized acquisition of their personal information. Safe harbours to notification exist if personal information is encrypted. Three types of safe harbour have been identified in the literature: exemptions, rebuttable presumptions and factors. The underlying assumption of exemptions is that encrypted personal information is secure and therefore unauthorized access does not pose a risk. However, the viability of this assumption is questionable when examined against data breaches involving encrypted information and the demanding practical requirements of effective encryption management. Recent recommendations by the Australian Law Reform Commission (ALRC) would amend the Privacy Act 1988 (Cth) to implement a data breach scheme that includes a different type of safe harbour, factor based analysis. The authors examine the potential capability of the ALRC’s proposed encryption safe harbour in relation to the US experience at the state legislature level.