990 resultados para Secondary electron
Resumo:
A low-pressure methane plasma generated by electron cyclotron wave resonance was characterized in terms of electron temperature, plasma density and composition. Methane plasmas were commonly used in the deposition of hydrogenated amorphous carbon thin films. Little variation in the plasma chemistry was observed by mass spectrometry measurements of the gas phase with increasing electron temperature. The results show that direct electron-impact reactions exert greater influence on the plasma chemistry than secondary ion-neutral reactions.
Resumo:
Influence of ZrO2 in HfO2 on the reflectance of HfO2/SiO2 multilayer at 248 nm was investigated. Two kinds of HfO2 with different ZrO2 content were chosen as high refractive index material and the same kind of SiO2 as low refractive index material to prepare the mirrors by electron-beam evaporation. The impurities in two kinds of HfO2 starting coating materials and in their corresponding single layer thin films were determined through glow discharge mass spectrum (GDMS) technology and secondary ion mass spectrometry (SIMS) equipment, respectively. It showed that between the two kinds of HfO2, either the bulk materials or their corresponding films, the difference of ZrO2 was much larger than that of the other impurities such as Ti and Fe. It is the Zr element that affects the property of thin films. Both in theoretical and in experimental, the mirror prepared with the HfO2 starting material containing more Zr content has a lower reflectance. Because the extinction coefficient of zirconia is relatively high in UV region, it can be treated as one kind of absorbing defects to influence the optical property of the mirrors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this letter, we investigated the effect of the buffer layer growth conditions on the secondary hexagonal phase content in cubic GaN films on GaAs(0 0 1) substrate. The reflection high-energy electron diffraction (RHEED) pattern of the low-temperature GaN buffer layers shows that both the deposition temperature and time are important in obtaining a smooth surface. Four-circle X-ray double-crystal diffraction (XRDCD) reciprocal space mapping was used to study the hexagonal phase inclusions in the cubic GaN (c-GaN) films grown on the buffer layers. The calculation of the volume contents of the hexagonal phase shows that higher temperature and longer time deposition of the buffer layer is not preferable for growing pure c-GaN film. Under optimized condition, 47 meV FWHM of near band gap emission of the c-GaN film was achieved. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The electron emission yields from the interaction of slow highly charged ions (SHCI) He2+, O2+ and Ne2+ with clean Si surface are measured separately. It is found that electron emission yield gamma increases proportionally to projectile kinetic energy E-p/M-p, ranging from 0.75 keV/u to 10.5 keV/u (i.e. 3.8 x 10(5) m/s <= v(p) <= 1.42 x 10(6) m/s), and it is higher for heavy ions (O2+ and Ne2+) than for light ion (He2+). For O2+ and Ne2+, gamma increases with Z(p) decreasing in our energy range, and it shows quite different from the result for higher projectile kinetic energy. After calculating the stopping power by using TRIM 2006, it is found that the fraction of secondary electrons induced by recoil atoms increases significantly at lower projectile energy, thereby leads to the differences in gamma for heavy ions O2+ and Ne2+ between lower and higher projectile kinetic energy.
Resumo:
We propose a physical mechanism that leads to the emergence of secondary threshold laws in processes of multiple ionization of atoms. We argue that the removal of n electrons (n>2) from a many-electron atom may proceed via intermediate resonant states of the corresponding doubly charged ion. For atoms such as rare gases, the density of such resonances in the vicinity of subsequent ionization thresholds is high. As a result, the appearance energies for multiply charged ions are close to these thresholds, while the effective power indices mu in the near-threshold energy dependence of the cross section, sigmaproportional toE(mu), are lower compared to those from the Wannier theory. This provides a possible explanation of the recent experimental results of B. Gstir [Nucl. Instrum. Methods Phys. Res. B 205, 413 (2003)].
Resumo:
Near-threshold ionization of He has been studied by using a uniform semiclassical wavefunction for the two outgoing electrons in the final channel. The quantum mechanical transition amplitude for the direct and exchange scattering derived earlier by using the Kohn variational principle has been used to calculate the triple differential cross sections. Contributions from singlets and triplets are critically examined near the threshold for coplanar asymmetric geometry with equal energy sharing by the two outgoing electrons. It is found that in general the tripler contribution is much smaller compared to its singlet counterpart. However, at unequal scattering angles such as theta (1) = 60 degrees, theta (2) = 120 degrees the smaller peaks in the triplet contribution enhance both primary and secondary TDCS peaks. Significant improvements of the primary peak in the TDCS are obtained for the singlet results both in symmetric and asymmetric geometry indicating the need to treat the classical action variables without any approximation. Convergence of these cross sections are also achieved against the higher partial waves. Present results are compared with absolute and relative measurements of Rosel et al (1992 Phys. Rev. A 46 2539) and Selles et al (1987 J. Phys. B. At. Mel. Phys. 20 5195) respectively.
Resumo:
The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.
Resumo:
The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low.
Resumo:
When biological matter is subjected to ionizing radiation, a wealth of secondary low-energy (<20 eV) electrons are produced. These electrons propagate inelastically, losing energy to the medium until they reach energies low enough to localize in regions of high electron affinity. We have recently shown that in fully solvated DNA fragments, nucleobases are particularly attractive for such excess electrons. The next question is what is their longer-term effect on DNA. It has been advocated that they can lead to strand breaks by cleavage of the phosphodiester C-3'-O-3' bond. Here we present a first-principles study of free energy barriers for the cleavage of this bond in fully solvated nucleotides. We have found that except for dAMP, the barriers are on the order of 6 kcal/mol, suggesting that bond cleavage is a regular feature at 300 K. Such low barriers are possible only as a result of solvent and thermal fluctuations. These findings support the notion that low-energy electrons can indeed lead to strand breaks in DNA.
Resumo:
Membranoproliferative glomerulonephritis type II (MPGN II) is characterised by electron-dense deposits of complement components in the glomerular basement membrane and retinal pigment epithelium. Approximately, 10% of affected individuals develop serious ocular complications similar to age-related macular degeneration such as choroidal neovascularisation (CNV), which has been managed with photocoagulation or photodynamic therapy; however, these treatments can impact visual acuity. We report the case of a 42-year-old woman with MPGN II presenting with decreased visual acuity and paracentral scotoma in her left eye due to an extrafoveal choroidal neovascular membrane (growth of new vessels under the retina). The patient was successfully treated with intravitreal ranibizumab (Lucentis) with restoration of visual function. This case highlights the successful management of CNV secondary to MPGN II with the antivascular endothelial growth factor agent ranibizumab and emphasises the importance of early referral of patients with MPGN II who are reporting of visual 'distortion'.
Resumo:
Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.
Resumo:
The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.
Resumo:
The inability to conserve cocoa (Theobroma cacao L.) germplasm via sced storage and the vulnerability of field collections make the establishment of cryopreserved genebanks for the crop a priority. An effective encapsulation-dehydration based cryopreservation system has been developed for cocoa but because the somatic embryos used for freezing arise after a protracted period of callus culture there is concern about maintenance of genetic fidelity during the process. Microsatellite markers for seven of the 10 cocoa linkage groups were used to screen a population of 189 primary somatic embryo-derived emblings and the 43 secondary somatic embryos they gave rise to. Of the primary somatic embryos, 38.1% exhibited polymorphic microsatellite profiles while for secondary somatic embryos the frequency was 23.3%. The same microsatellite markers used to screen another population of 44 secondary somatic embryos cryopreserved through encapsulation-dehydration revealed no polymorphisms. Scanning electron microscopy showed the secondary somatic embryos were derived from cotyledonary epidermal cells rather than callus. The influence of embryo ontogeny on somaclonal variation is discussed.
Resumo:
In the present work, nanocomposites of polyaniline (PANI) and layered alpha-Zr(HPO4)(2).H2O (alpha-ZrP) were prepared using two different approaches: (i) the in situ aniline polymerization in the presence of the layered inorganic material and (ii) the layer-by-layer (LBL) assembly using an aqueous solution of the polycation emeraldine salt (ES-PANI) and a dispersion of exfoliated negative slabs of alpha-ZrP. These materials were characterized spectroscopically using mainly resonance Raman scattering at four exciting radiations and electronic absorption in the UV-VIS-NIR region. Structural and textural characterizations were carried out using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The polymer obtained by the in situ aniline polymerization is located primarily in the external surface of the inorganic material although aniline monomers were intercalated between alpha-ZrP interlayer regions before oxidative polymerization. Through resonance Raman spectroscopy, it was observed that the formed polymer has semiquinone units (ES-PANI) and also azo bonds (-N = N-), showing that this method results in a polymer with a different structure from the usual ""head-to-tail"" ES-PANI. The LBL assembly of pre-formed ES-PANI and exfoliated alpha-ZrP particles produces homogeneous films with reproducible deposition from layer to layer, up to 20 bilayers. Resonance Raman (lambda(0) = 632.8 nm) spectrum of PANI/ZrP LBL film shows an enhancement in the intensity of the polaronic band at 1333 cm(-1) (nu C-N center dot+) and the decrease of the band intensity at 1485 cm(-1) compared to bulk ES-PANI. Its UV-VIS-NIR spectrum presents an absorption tail in the NIR region assigned to delocalized free charge carrier. These spectroscopic features are characteristic of highly conductive secondary doped PANI suggesting that polymeric chains in PANI/ZrP LBL film have a more extended conformation than in bulk ES-PANI.
Resumo:
Different secondary caries models may present different results. The purpose of this study was to compare different in vitro secondary caries models, evaluating the obtained results by polarized-light microscopy (PLM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Standardized human enamel specimens (n = 12) restored with different materials (Z250 conventional composite resin-CRZ, Freedom polyacid-modified composite resin-CRF, Vitremer resin-modified glass-ionomer-GIV, and Fuji IX conventional glass-ionomer cement-GIF) were submitted to microbiological (MM) or chemical caries models (CM). The control group was not submitted to any caries model. For MM, specimens were immersed firstly in sucrose broth inoculated with Streptococcus mutans ATCC 35688, incubated at 37 degrees C/5% CO(2) for 14 days and then in remineralizing solution for 14 days. For CM, specimens were submitted to chemical pH-cycling. Specimens were ground, submitted to PLM and then were dehydrated, gold-sputtered and submitted to SEM and EDS. Results were statistically analyzed by Kruskall-Wallis and Student-Newman-Keuls tests (alpha = 0.05). No differences between in vitro caries models were found. Morphological differences in enamel demineralization were found between composite resin and polyacid-modified composite resin (CRZ and CRF) and between the resin-modified glass-ionomer and the glass-ionomer cement (GIF and GIV). GIF showed higher calcium concentration and less demineralization, differing from the other materials. In conclusion, the glass-ionomer cement showed less caries formation under both in vitro caries models evaluated. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 90B: 635-640, 2009