870 resultados para Seashore ecology.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased anthropogenic loading of nitrogen (N) and phosphorus (P) has led to an eutrophication problem in the Baltic Sea, and the spring bloom is a key component in the biological uptake of increased nutrient concentrations. The spring bloom in the Baltic Sea is dominated by both diatoms and dinoflagellates. However, the sedimentation of these groups is different: diatoms tend to sink to the sea floor at the end of the bloom, while dinoflagellates to a large degree are been remineralized in the euphotic zone. Understanding phytoplankton competition and species specific ecological strategies is thus of importance for assessing indirect effects of phytoplankton community composition on eutrophication problems. The main objective of this thesis was to describe some basic physiological and ecological characteristics of the main cold-water diatoms and dinoflagellates in the Baltic Sea. This was achieved by specific studies of: (1) seasonal vertical positioning, (2) dinoflagellate life cycle, (3) mixotrophy, (4) primary production, respiration and growth and (5) diatom silicate uptake, using cultures of common cold-water diatoms: Chaetoceros wighamii, C. gracilis, Pauliella taeniata, Thalassiosira baltica, T. levanderi, Melosira arctica, Diatoma tenuis, Nitzschia frigida, and dinoflagellates: Peridiniella catenata, Woloszynskia halophila and Scrippsiella hangoei. The diatoms had higher primary production capacity and lower respiration rate compared with the dinoflagellates. This difference was reflected in the maximum growth rate, which for the examined diatoms range from 0.6 to 1.2 divisions d-1, compared with 0.2 to 0.3 divisions d-1 for the dinoflagellates. Among diatoms there were species specific differences in light utilization and uptake of silicate, and C. wighamii had the highest carbon assimilation capacity and maximum silicate uptake. The physiological properties of diatoms and dinoflagellates were used in a model of the onset of the spring bloom: for the diatoms the model could predict the initiation of the spring bloom; S. hangoei, on the other hand, could not compete successfully and did not obtain positive growth in the model. The other dinoflagellates did not have higher growth rates or carbon assimilation rates and would thus probably not perform better than S. hangoei in the model. The dinoflagellates do, however, have competitive advantages that were not included in the model: motility and mixotrophy. Previous investigations has revealed that the chain-forming P. catenata performs diurnal vertical migration (DVM), and the results presented here suggest that active positioning in the water column, in addition to DVM, is a key element in this species' life strategy. There was indication of mixotrophy in S. hangoei, as it produced and excreted the enzyme leucine aminopeptidase (LAP). Moreover, there was indirect evidence that W. halophila obtains carbon from other sources than photosynthesis when comparing increase in cell numbers with in situ carbon assimilation rates. The results indicate that mixotrophy is a part of the strategy of vernal dinoflagellates in the Baltic Sea. There were also indications that the seeding of the spring bloom is very important for the dinoflagellates to succeed. In mesocosm experiments dinoflagellates could not compete with diatoms when their initial numbers were low. In conclusion, this thesis has provided new information about the basic physiological and ecological properties of the main cold-water phytoplankton in the Baltic Sea. The main phytoplankton groups, diatoms and dinoflagellates, have different physiological properties, which clearly separate their life strategies. The information presented here could serve as further steps towards better prognostic models of the effects of eutrophication in the Baltic Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims of this thesis This study is part of a larger hare project in Finland, which provides answers to basic ecological questions regarding the mountain hare. This study of the ecology of the mountain hare focuses in particular on different levels of managed boreal forest. The feeding habits and intensity of mountain hares in winter are explored, and the connections between mountain hares versus the forest structure are also studied (e.g. habitat use and the importance of different forest layers for hares). The use of the environment by hares at the landscape level was examined (forest patch structures), and the home ranges of mountain hares were studied. Finally, the productivity and survival rate of mountain hare populations were also studied (discussion e.g. predator effects on hare populations). Conclusions Feeding intensity seemed to be highest in the spring-winter, when home ranges were also largest. Favourable food species are covered by snow in winter and the mobility of hares is highest during late winter. A shortage of suitable food species may be problematic for hares, especially during the winter period. In this study mountain hares preferred a dense shrub layer at local level and deciduous and mixed tree forest over coniferous forest at the landscape level. Food and shelter are vital for hares and the preference for particular habitats may also affect the population dynamics of the mountain hare. It would be possible to improve the quality of food and shelter or at least prevent the most negative habitat changes through forest management. At a local level it is also possible to add supplementary food for hares through the winter period. The intensive clearing of young sapling stands and especially the removal of deciduous shrubs and trees reduces the quality of habitats for the mountain hare. Mountain hares primarily live in forest habitat and it is possible that changes in the forest structure play a crucial role in mountain hare habitat preference. Ecological knowledge of the mountain hare is vital to create habitat structure more suitable for the species. More deciduous trees should be saved in managing forests and the mechanical clearing of the shrub layer should be done carefully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbivorous insects comprise a major part of terrestrial biodiversity, and their interactions with their host plants and natural enemies are of vast ecological importance. A large body of research demonstrates that the ecology and evolution of these insects may be affected by trophic interactions, by abiotic influences, and by intraspecific processes, but so far research on these individual aspects has rarely been combined. This thesis uses the leaf-mining moth Tischeria ekebladella and the pedunculate oak (Quercus robur) as a case study to assess how spatial variation in trophic interactions and the physical distribution of host trees jointly affect the distribution, dynamics and evolution of a host-specific herbivore. With respect to habitat quality, Tischeria ekebladella experiences abundant variation at several spatial scales. Most of this variation occurs at small scales notably among leaves and shoots within individual trees. While hypothetically this could cause moths to evolve an ability to select leaves and shoots of high quality, I did not find any coupling between female preference and offspring performance. Based on my studies on temporal variation in resource quality I therefore propose that unpredictable temporal changes in the relative rankings of individual resource units may render it difficult for females to predict the fate of their developing offspring. With respect to intraspecific processes, my results suggest that limited moth dispersal in relation to the spatial distribution of oak trees plays a key role in determining the regional distribution of Tischeria ekebladella. The distribution of the moth is aggregated at the landscape level, where local leaf miner populations are less likely to be present where oaks are scarce. A modelling exercise based on empirical dispersal estimates revealed that the moth population on Wattkast an island in south-western Finland is spatially structured overall, but that the relative importance of local and regional processes on tree-specific moth dynamics varies drastically across the landscape. To conclude, my work in the oak-Tischeria ekebladella system demonstrates that the local abundance and regional distribution of a herbivore may be more strongly influenced by the spatial location of host trees than by their relative quality. Hence, it reveals the importance of considering spatial context in the study of herbivorous insects, and forms a bridge between the classical fields of plant-insect interactions and spatial ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ongoing rapid fragmentation of tropical forests is a major threat to global biodiversity. This is because many of the tropical forests are so-called biodiversity 'hotspots', areas that host exceptional species richness and concentrations of endemic species. Forest fragmentation has negative ecological and genetic consequences for plant survival. Proposed reasons for plant species' loss in forest fragments are, e.g., abiotic edge effects, altered species interactions, increased genetic drift, and inbreeding depression. To be able to conserve plants in forest fragments, the ecological and genetic processes that threaten the species have to be understood. That is possible only after obtaining adequate information on their biology, including taxonomy, life history, reproduction, and spatial and genetic structure of the populations. In this research, I focused on the African violet (genus Saintpaulia), a little-studied conservation flagship from the Eastern Arc Mountains and Coastal Forests hotspot of Tanzania and Kenya. The main objective of the research was to increase understanding of the life history, ecology and population genetics of Saintpaulia that is needed for the design of appropriate conservation measures. A further aim was to provide population-level insights into the difficult taxonomy of Saintpaulia. Ecological field work was conducted in a relatively little fragmented protected forest in the Amani Nature Reserve in the East Usambara Mountains, in northeastern Tanzania, complemented by population genetic laboratory work and ecological experiments in Helsinki, Finland. All components of the research were conducted with Saintpaulia ionantha ssp. grotei, which forms a taxonomically controversial population complex in the study area. My results suggest that Saintpaulia has good reproductive performance in forests with low disturbance levels in the East Usambara Mountains. Another important finding was that seed production depends on sufficient pollinator service. The availability of pollinators should thus be considered in the in situ management of threatened populations. Dynamic population stage structures were observed suggesting that the studied populations are demographically viable. High mortality of seedlings and juveniles was observed during the dry season but this was compensated by ample recruitment of new seedlings after the rainy season. Reduced tree canopy closure and substrate quality are likely to exacerbate seedling and juvenile mortality, and, therefore, forest fragmentation and disturbance are serious threats to the regeneration of Saintpaulia. Restoration of sufficient shade to enhance seedling establishment is an important conservation measure in populations located in disturbed habitats. Long-term demographic monitoring, which enables the forecasting of a population s future, is also recommended in disturbed habitats. High genetic diversities were observed in the populations, which suggest that they possess the variation that is needed for evolutionary responses in a changing environment. Thus, genetic management of the studied populations does not seem necessary as long as the habitats remain favourable for Saintpaulia. The observed high levels of inbreeding in some of the populations, and the reduced fitness of the inbred progeny compared to the outbred progeny, as revealed by the hand-pollination experiment, indicate that inbreeding and inbreeding depression are potential mechanisms contributing to the extinction of Saintpaulia populations. The relatively weak genetic divergence of the three different morphotypes of Saintpaulia ionantha ssp. grotei lend support to the hypothesis that the populations in the Usambara/lowlands region represent a segregating metapopulation (or metapopulations), where subpopulations are adapting to their particular environments. The partial genetic and phenological integrity, and the distinct trailing habit of the morphotype 'grotei' would, however, justify its placement in a taxonomic rank of its own, perhaps in a subspecific rank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat fragmentation is currently affecting many species throughout the world. As a consequence, an increasing number of species are structured as metapopulations, i.e. as local populations connected by dispersal. While excellent studies of metapopulations have accumulated over the past 20 years, the focus has recently shifted from single species to studies of multiple species. This has created the concept of metacommunities, where local communities are connected by the dispersal of one or several of their member species. To understand this higher level of organisation, we need to address not only the properties of single species, but also establish the importance of interspecific interactions. However, studies of metacommunities are so far heavily biased towards laboratory-based systems, and empirical data from natural systems are urgently needed. My thesis focuses on a metacommunity of insect herbivores on the pedunculate oak Quercus robur a tree species known for its high diversity of host-specific insects. Taking advantage of the amenability of this system to both observational and experimental studies, I quantify and compare the importance of local and regional factors in structuring herbivore communities. Most importantly, I contrast the impact of direct and indirect competition, host plant genotype and local adaptation (i.e. local factors) to that of regional processes (as reflected by the spatial context of the local community). As a key approach, I use general theory to generate testable hypotheses, controlled experiments to establish causal relations, and observational data to validate the role played by the pinpointed processes in nature. As the central outcome of my thesis, I am able to relegate local forces to a secondary role in structuring oak-based insect communities. While controlled experiments show that direct competition does occur among both conspecifics and heterospecifics, that indirect interactions can be mediated by both the host plant and the parasitoids, and that host plant genotype may affect local adaptation, the size of these effects is much smaller than that of spatial context. Hence, I conclude that dispersal between habitat patches plays a prime role in structuring the insect community, and that the distribution and abundance of the target species can only be understood in a spatial framework. By extension, I suggest that the majority of herbivore communities are dependent on the spatial structure of their landscape and urge fellow ecologists working on other herbivore systems to either support or refute my generalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate is warming and it is especially seen in arctic areas, where the warming trend is expected to be greatest. Arctic freshwater ecosystems, which are a very characteristic feature of the arctic landscape, are especially sensitive to climate change. They could be used as early warning systems, but more information about the ecosystem functioning and responses are needed for proper interpretation of the observations. Phytoplankton species and assemblages could be especially suitable for climate-related studies, since they have short generation times and react rapidly to changes in the environment. In addition, phytoplankton provides a good tool for lake classifications, since different species have different requirements and tolerance ranges for various environmental factors. The use of biological indicators is especially useful in arctic areas, were many of the chemical factors commonly fall under the detection limit and therefore do not provide much information about the environment. This work brings new information about species distribution and dynamics of arctic freshwater phytoplankton in relation to environmental factors. The phytoplankton of lakes in Finnish Lapland and other European high-altitude or high-latitude areas were compared. Most lakes were oligotrophic and dominated by flagellated species belonging to chrysophytes, cryptophytes and dinoflagellates. In Finnish Lapland cryptophytes were of less importance, whereas desmids had high species richness in many of the lakes. In Pan-European scale, geographical and catchment-related factors were explaining most of the differences in species distributions between different districts, whereas lake water chemistry (especially conductivity, SiO2 and pH) was most important regionally. Seasonal and interannual variation of phytoplankton was studied in subarctic Lake Saanajärvi. Characteristic phytoplankton species in this oligotrophic, dimictic lake belonged mainly to chrysophytes and diatoms. The maximum phytoplankton biomass in Lake Saanajärvi occurs during autumn, while spring biomass is very low. During years with heavy snow cover the lake suffers from pH drop caused by melt waters, but the effects of this acid pulse are restricted to surface layers and last for a relatively short period. In addition to some chemical parameters (mainly Ca and nutrients), length of the mixing cycle and physical factors such as lake water temperature and thermal stability of water column had major impact on phytoplankton dynamics. During a year with long and strong thermal stability, the phytoplankton community developed towards an equilibrium state, with heavy dominance of only a few taxa for a longer period of time. During a year with higher windiness and less thermal stability, the species composition was more diverse and species with different functional strategies were able to occur simultaneously. The results of this work indicate that although arctic lakes in general share many common features concerning their catchment and water chemistry, large differences in biological features can be found even in a relatively small area. Most likely the lakes with very different algal flora do not respond in a similar way to differences in the environmental factors, and more information about specific arctic lake types is needed. The results also show considerable year to year differences in phytoplankton species distribution and dynamics, and these changes are most likely linked to climatic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the nursery pollination system of figs (Ficus, Moraceae), flower-bearing receptacles called syconia breed pollinating wasps and are units of both pollination and seed dispersal. Pollinators and mammalian seed dispersers are attracted to syconia by volatile organic compounds (VOCs). In monoecious figs, syconia produce both wasps and seeds, while in (gyno)dioecious figs, male (gall) fig trees produce wasps and female (seed) fig trees produce seeds. VOCs were collected using dynamic headspace adsorption methods on freshly collected figs from different trees using Super Q® collection traps. VOC profiles were determined using gas chromatography–mass spectrometry (GC–MS).The VOC profile of receptive and dispersal phase figs were clearly different only in the dioecious mammal-dispersed Ficus hispida but not in dioecious bird-dispersed F. exasperata and monoecious bird-dispersed F. tsjahela. The VOC profile of dispersal phase female figs was clearly different from that of male figs only in F. hispida but not in F. exasperata, as predicted from the phenology of syconium production which only in F. hispida overlaps between male and female trees. Greater difference in VOC profile in F. hispida might ensure preferential removal of seed figs by dispersal agents when gall figs are simultaneously available.The VOC profile of only mammal-dispersed female figs of F. hispida had high levels of fatty acid derivatives such as amyl-acetates and 2-heptanone, while monoterpenes, sesquiterpenes and shikimic acid derivatives were predominant in the other syconial types. A bird- and mammal-repellent compound methyl anthranilate occurred only in gall figs of both dioecious species, as expected, since gall figs containing wasp pollinators should not be consumed by dispersal agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronising bushcricket males achieve synchrony by delaying their chirps in response to calling neighbours. In multi-male choruses, males that delay chirps in response to all their neighbours would remain silent most of the time and be unable to attract mates. This problem could be overcome if the afferent auditory system exhibited selective attention, and thus a male interacted only with a subset of neighbours. We investigated whether individuals of the bushcricket genus Mecopoda restricted their attention to louder chirps neurophysiologically, behaviourally and through spacing. We found that louder leading chirps were preferentially represented in the omega neuron but the representation of softer following chirps was not completely abolished. Following chirps that were 20 dB louder than leading chirps were better represented than leading chirps. During acoustic interactions, males synchronised with leading chirps even when the following chirps were 20 dB louder. Males did not restrict their attention to louder chirps during interactions but were affected by all chirps above a particular threshold. In the field, we found that males on average had only one or two neighbours whose calls were above this threshold. Selective attention is thus achieved in this bushcricket through spacing rather than neurophysiological filtering of softer signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronising bushcricket males achieve synchrony by delaying their chirps in response to calling neighbours. In multi-male choruses, males that delay chirps in response to all their neighbours would remain silent most of the time and be unable to attract mates. This problem could be overcome if the afferent auditory system exhibited selective attention, and thus a male interacted only with a subset of neighbours. We investigated whether individuals of the bushcricket genus Mecopoda restricted their attention to louder chirps neurophysiologically, behaviourally and through spacing. We found that louder leading chirps were preferentially represented in the omega neuron but the representation of softer following chirps was not completely abolished. Following chirps that were 20 dB louder than leading chirps were better represented than leading chirps. During acoustic interactions, males synchronised with leading chirps even when the following chirps were 20 dB louder. Males did not restrict their attention to louder chirps during interactions but were affected by all chirps above a particular threshold. In the field, we found that males on average had only one or two neighbours whose calls were above this threshold. Selective attention is thus achieved in this bushcricket through spacing rather than neurophysiological filtering of softer signals.