992 resultados para Screen-printed electrode


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mercury (II)measurementswereperformedthankstoanewlydevelopedelectrochemicalmethodusinga disposablegoldmodified screenprintedcarbonelectrode.Themethodhasawidedynamicrange(1–100 mg/L), agoodaccuracyandalimitofdetectionincompliancewithWHOstandards.Theapplicationofthe methodtoseveralgroundwatersamplesmadeitpossibletoidentify,forthe first time,mercurycontent higherthantherecommendedWHOstandardvalueinagoldminingactivityareainthenorthern partofBurkinaFaso.TheaccuracyoftheassaywascheckedbyICP/MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is one of the most prevalent forms of cancer in women. Despite all recent advances in early diagnosis and therapy, mortality data is not decreasing. This is an outcome of the inexistence of validated serum biomarkers allowing an early prognosis, out coming from the limited understanding of the natural history of the disease. In this context, miRNAs have been attracting a special interest throughout the scientific community as promising biomarkers in the early diagnosis of cancer. In breast cancer, several miRNAs and their levels of expression are significantly different between normal tissue and tissue with neoplasia, as well as between different molecular subtypes of breast cancer, also associated with prognosis. Thus, this these presents a meta-analysis that allows identifying a reliable miRNA biomarker for the early detection of breast cancer. In this, miRNA-155 was identified as the best one and an electrochemical biosensor was developed for its detection in serum samples. The biosensor was assembled by following three button-up stages: (1) the complementary miRNA sequence thiol terminated (anti-miRNA-155) was immobilized on a commercial gold screen-printed electrode (Au-SPE), followed by (2) blocking non-specific binding with mercaptosuccinic acid and by (3) miRNA hybridization. The biosensor was able to detect miRNA concentrations lying in the 10-18 mol/L (aM) range, displaying a linear response from 10 aM to 1nM. The device showed a limit of detection of 5.7 aM in human serum samples and good selectivity against other biomolecules in serum, such as cancer antigen CA-15.3 and bovine serum albumin (BSA). Overall, this simple and sensitive strategy is a promising approach for the quantitative and/or simultaneous analysis of multiple miRNA in physiological fluids, aiming at further biomedical research devoted to biomarker monitoring and point-of-care diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathodic stripping voltammetry (CSV) and accumulation at the hanging mercury drop electrode are reviewed briefly. Proposals in a recent IUPAC technical report are considered. Three recent developments in CSV are discussed: the adaptation of CSV methods developed for use with the hanging mercury drop electrode for use with screen-printed carbon electrodes in disposable sensors, the use of reactive accumulation, and the chemometric use of kinetic methods of determination with pulse methods in CSV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive amperometric biosensor for determination of carbamate pesticides directly in water, fruit and vegetable samples has been evaluated, electrochemically characterized and optimized. The biosensor strip was fabricated in screen printed technique on a ceramic support using silver-based paste for reference electrode, and platinum-based paste for working and auxiliary electrodes. The working electrode was modified by a layer of carbon paste mixed with cobalt(II) phthalocyanine and acetylcellulose. Cholinesterase (ChE) enzymes with low enzymatic charge were immobilized on this layer. The operational simplicity of the biosensor consists in that a small drop (similar to 50 mu l) of substrate or sample is deposited on a horizontally positioned biosensor strip representing the microelectrochemical cell. The working potential of the biosensor was 370 mV versus Ag/AgI on a ship reference electrode preventing the interference of electroactive species which are oxidable at more positive potentials. The biosensor was applied to investigate the degradation of two reference ChE inhibitors in freeze dried water under different storage conditions and for direct determination of some N-methylcarbamates (NMCs) in fruit and vegetable samples at ppb concentration levels without any sample pretreatment. A comparison of the obtained results for the total carbamate concentration was done against those obtained using HPLC measurements. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Graphene nanosheets, dispersed in Nafion (Nafion-G) solution, were used in combination with in situ plated bismuth film electrode for fabricating the enhanced electrochemical sensing platform to determine the lead (Pb2+) and cadmium (Cd2+) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the composite film modified glassy carbon electrode were investigated. It is found that the prepared Nafion-G composite film not only exhibited improved sensitivity for the metal ion detections, but also alleviated the interferences due to the synergistic effect of graphene nanosheets and Nafion. The linear calibration curves ranged from 0.5 mu g L-1 to 50 mu g L-1 for Pb2+ and 1.5 mu g L-1 to 30 mu g L-1 for Cd2+. respectively. The detection limits (S/N = 3) were estimated to be around 0.02 mu g L-1 for Pb2+ and Cd2+. The practical application of the proposed method was verified in the water sample determination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Improvement of the sensitivity of electrochemical sandwich enzyme immunoassay has been achieved by electrodepositing redox polymer on screen-printed carbon electrode surface, on which the sandwich complex was formed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a simple and facile methodology for constructing Pt (6.3 mm x 50 mu m) and Cu (6.3 mm x 30 mu m) annular microband electrodes for use in room temperature ionic liquids (RTILs) and propose their use for amperometric gas sensing. The suitability of microband electrodes for use in electrochemical analysis was examined in experiments on two systems. The first system studied to validate the electrochemical responses of the annular microband electrode was decamethylferrocene (DmFc), as a stable internal reference probe commonly used in ionic liquids, in [Pmim][NTf2], where the diffusion coefficients of DmFc and DmFc(+) and the standard electron rate constant for the DmFc/DmFc(+) couple were determined through fitting chronoamperometric and cyclic voltammetric responses with relevant simulations. These values are independently compared with those collected from a commercially available Pt microdisc electrode with excellent agreement. The second system focuses on O-2 reduction in [Pmim][NTf2], which is used as a model for gas sensing. The diffusion coefficients of O-2 and O-2(-) and the electron transfer rate constant were again obtained using chronoamperometry and cyclic voltammetry, along with simulations. Results determined from the microbands are again consistent to those evaluated from the Pt microdisc electrode when compared these results from home-made microband and commercially available microdisc electrodes. These observations indicate that the fabricated annular microband electrodes are suitable for quantitative measurements. Further the successful use of the Cu electrodes in the O-2 system suggests a cheap disposable sensor for gas detection. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of anodic stripping voltammetry (ASV)has been proven in the past to be a precise and sensitive analytical method with an excellent limit of detection. Electrochemical sensors could help to avoid expensive and time consuming procedures as sample taking and storage and provide a both sensitive and reliable method for the direct monitoring of heavy metals in the aquatic environment. Solid electrodes which have been used in this work, were produced using previously developed methods. Commercially available and newly designed, screen printed carbon and gold plated working electrodes (WE) were compared. Good results were achieved with the screen printed and plated electrodes under conditions optimized for each electrode material. The electrode stability, reproducibility of single measurements and the limit of detection obtained for Pb were satisfactory (3*10-6mol/l on screen printed carbon WEs after 60 s of deposition and 6*10-6 mol/l on gold plated WEs after 5 min of deposition). Complete 3-electrode-sets (counter, reference and working electrode) were screen printed on different substrates (glass, polycarbonate and alumina). Also here, both carbon and gold were used as WE. Using 3-electrode-sets with a gold plated WE on glass was a limit of detection of 7*10-7 mol/l was achieved after only 60 s of deposition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Disposable screen-printed electrodes (SPCE) were modified using a cosmetic product to partially block the electrode surface in order to obtain a microelectrode array. The microarrays formed were electropolymerized with aniline. Scanning electron microscopy was used to evaluate the modified and polymerized electrode surface. Electrochemical characteristics of the constructed sensor for cadmium analysis were evaluated by cyclic and square-wave voltammetry. Optimized stripping procedure in which the preconcentration of cadmium was achieved by depositing at –1.20 V (vs. Ag/AgCl) resulted in a well defined anodic peak at approximately –0.7 V at pH 4.6. The achieved limit of detection was 4 × 10−9 mol dm−3. Spray modified and polymerized microarray electrodes were successfully applied to quantify cadmium in fish sample digests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human epidermal growth factor receptor 2 (HER2) is a breast cancer biomarker that plays a major role in promoting breast cancer cell proliferation and malignant growth. The extracellular domain (ECD) of HER2 can be shed into the blood stream and its concentration is measurable in the serum fraction of blood. In this work an electrochemical immunosensor for the analysis of HER2 ECD in human serum samples was developed. To achieve this goal a screen-printed carbon electrode, modified with gold nanoparticles, was used as transducer surface. A sandwich immunoassay, using two monoclonal antibodies, was employed and the detection of the antibody–antigen interaction was performed through the analysis of an enzymatic reaction product by linear sweep voltammetry. Using the optimized experimental conditions the calibration curve (ip vs. log[HER2 ECD]) was established between 15 and 100 ng/mL and a limit of detection (LOD) of 4.4 ng/mL was achieved. These results indicate that the developed immunosensor could be a promising tool in breast cancer diagnostics, patient follow-up and monitoring of metastatic breast cancer since it allows quantification in a useful concentration range and has an LOD below the established cut-off value (15 ng/mL).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes −54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, the development of a genosensor for the event-specific detection of MON810 transgenic maize is proposed. Taking advantage of nanostructuration, a cost-effective three dimensional electrode was fabricated and a ternary monolayer containing a dithiol, a monothiol and the thiolated capture probe was optimized to minimize the unspecific signals. A sandwich format assay was selected as a way of precluding inefficient hybridization associated with stable secondary target structures. A comparison between the analytical performance of the Au nanostructured electrodes and commercially available screen-printed electrodes highlighted the superior performance of the nanostructured ones. Finally, the genosensor was effectively applied to detect the transgenic sequence in real samples, showing its potential for future quantitative analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uma nova rede de polímeros interpenetrantes (IPN) baseada em poliuretana de óleo de mamona e poli(etileno glicol) e poli(metacrilato de metila) foi preparada para ser utilizada como eletrólito polimérico. Os seguintes parâmetros de polimerização foram avaliados: massa molecular do poli(etileno glicol) (PEG), concentração de PEG e concentração de metacrilato de metila. As membranas de IPN foram caracterizadas por calorimetria diferencial de varredura (DSC) e espectroscopia de infravermelho por transformada de Fourier (FT-IR). Os eletrólitos de redes de polímeros interpenetrantes (IPNE) foram preparados a partir da dopagem com sal de lítio através do inchamento numa solução de 10% em massa de LiClO4 na mistura de carbonato de etileno e carbonato de propileno na razão mássica de 50:50. As IPNEs foram caracterizadas por espectroscopia de impedância eletroquímica e Raman. As IPNEs foram testadas como eletrólito polimérico em supercapacitores. As células capacitivas foram preparadas utilizando eletrodos de polipirrol (PPy). Os valores de capacitância e eficiência foram calculados por impedância eletroquímica, voltametria cíclica e ciclos galvonostáticos de carga e descarga. Os valores de capacitância obtidos foram em torno de 90 F.g-1 e eficiência variou no intervalo de 88 a 99%. Os valores de densidade de potência foram superiores a 250 W.kg-1 enquanto que a densidade de energia variou de 10 a 33 W.h.kg-1, dependendo da composição da IPNE. As características eletroquímicas do eletrólito formado pela IPN-LiClO4 (IPNE) foram comparadas aos eletrólitos poliméricos convencionais, tais como poli(difluoreto de vinilideno)-(hexafluorpropileno) ((PVDF-HFP/LiClO4) e poliuretana comercial (Bayer desmopan 385) (PU385/LiClO4). As condutividades na temperatura ambiente foram da ordem de 10-3 S.cm-1. A capacitância da célula utilizando eletrodos de PPy com eletrólito de PVDFHFP foi de 115 F.g-1 (30 mF.cm-2) e 110 F.g-1 (25 mF.cm-2) para a célula com PU385 comparadas a 90 F.g-1 (20 mF.cm-2) para a IPNE. Os capacitores preparados com eletrólito de IPNE apresentaram valores de capacitância inferior aos demais, entretanto provaram ser mais estáveis e mais resistentes aos ciclos de carga/descarga. A interpenetração de duas redes poliméricas, PU e PMMA produziu um eletrólito com boa estabilidade mecânica e elétrica. Um protótipo de supercapacitor de estado sólido foi produzindo utilizando eletrodos impressos de carbono ativado (PCE) e o eletrólito polimérico de IPNE. A técnica de impressão de carbono possui várias vantagens em relação aos outros métodos de manufatura de eletrodos de carbono, pois a área do eletrodo, espessura e composição são variáveis que podem ser controladas experimentalmente. As células apresentaram uma larga janela eletroquímica (4V) e valores da capacitância da ordem de 113 mF.cm-2 (16 F.g-1). Métodos alternativos de preparação do PCE investigados incluem o uso de IPNE como polímero de ligação ao carbono ativado, estes eletrodos apresentaram valores de capacitância similares aos produzidos com PVDF. A influência do número de camadas de carbono usadas na produção do PCE também foi alvo de estudo. Em relação ao eletrólito polimérico, o plastificante e o sal de lítio foram adicionados durante a síntese, formando a IPNGel. As células apresentaram alta capacitância e boa estabilidade após 4000 ciclos de carga e descarga. As membranas de IPN foram testadas também como reservatório de medicamento em sistemas de transporte transdérmico por iontoforese. Os filmes, mecanicamente estáveis, formaram géis quando inchado em soluções saturadas de lidocaina.HCl, anestésico local, em propileno glicol (PG), poli(etileno glicol) (PEG400) e suas misturas. O grau de inchamento em PG foi de 15% e 35% em PEG400. Agentes químicos de penetração foram utilizados para diminuir a resistência da barreira causada pela pele, dentre eles o próprio PG, a 2-pirrolidinona (E1) e a 1-dodecil-2-pirrolidinona (E2). Os géis foram caracterizados por espectroscopia de impedância eletroquímica e transporte passivo e por iontoforese através de uma membrana artificial (celofane). O sistema IPN/ lidocaina.HCl apresentou uma correlação linear entre medicamento liberado e a corrente aplicada. Os melhores resultados de transporte de medicamento foram obtidos utilizando o PG como solvente.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The lanthanum strontium cobalt iron oxide (La1-xSrxCo1-yFeyO3 LSCF) is the most commonly used material for application as cathode in Solid Oxide Fuel Cells (SOFCs), mainly due to their high mixed ionic electronic conductivity between 600 and 800ºC. In this study, LSCF powders with different compositions were synthesized via a combination between citrate and hydrothermal methods. As-prepared powders were calcined from 700 to 900°C and then characterized by X-ray fluorescence, X-ray diffraction, thermal analyses, particle size analyses, nitrogen adsorption (BET) and scanning electronic microscopy. Films of composition La0,6Sr0,4Co0,2Fe0,8O3 (LSCF6428), powders calcined at 900°C, were screen-printed on gadolinium doped ceria (CGO) substrates and sintered between 1150 and 1200°C. The effects of level of sintering on the microstructure and electrochemical performance of electrodes were evaluated by scanning electronic microscopy and impedance spectroscopy. Area specific resistance (ASR) exhibited strong relation with the microstructure of the electrodes. The best electrochemical performance (0.18 ohm.cm2 at 800°C) was obtained for the cathode sintered at 1200°C for 2 h. The electrochemical activity can be further improved through surface activation by impregnation with PrOx, in this case the electrode area specific resistance decreases to values as low as 0.12 ohm.cm2 (800°C), 0.17 ohm.cm2 (750°C) and 0.31 ohm.cm2 (700°C). The results indicate that the citrate-hydrothermal method is suitable for the attainment of LSCF particulates with potential application as cathode component in intermediate temperature solid oxide fuel cells (IT-SOFCs)