856 resultados para Science and Mathematics Teaching
Resumo:
In this action research study I focused on my eighth grade pre-algebra students’ abilities to attack problems with enthusiasm and self confidence whether they completely understand the concepts or not. I wanted to teach them specific strategies and introduce and use precise vocabulary as a part of the problem solving process in hopes that I would see students’ confidence improve as they worked with mathematics. I used non-routine problems and concept-related open-ended problems to teach and model problem solving strategies. I introduced and practiced communication with specific and precise vocabulary with the goal of increasing student confidence and lowering student anxiety when they were faced with mathematics problem solving. I discovered that although students were working more willingly on problem solving and more inclined to attempt word problems using the strategies introduced in class, they were still reluctant to use specific vocabulary as they communicated to solve problems. As a result of this research, my style of teaching problem solving will evolve so that I focus more specifically on strategies and use precise vocabulary. I will spend more time introducing strategies and necessary vocabulary at the beginning of the year and continue to focus on strategies and process in order to lower my students’ anxiety and thus increase their self confidence when it comes to doing mathematics, especially problem solving.
Resumo:
In this action research study of my mathematics classroom of eighth grade students, I investigated the use of mathematics vocabulary by focusing on improving the usage of this vocabulary in both oral and written communication. I discovered oral communication tended to show more improvements compared to written communication done by the same group of students. As a result of this research, I plan to continue to focus my teaching on the use of mathematics vocabulary in an effort to help my students gain a greater understanding of the daily use of that vocabulary.
Resumo:
In this action research study of my classroom of sixth grade mathematics, I investigated the impact of an increase in student oral and written communication on student level of understanding and student self-confidence. I also investigated the changes in my teaching as I increased opportunities for student oral and written communication of mathematics. While I discovered that student level of understanding was not necessarily increased if written communications were increased, I did find that there seemed to be a rise in student level of self-confidence and understanding throughout the course of the research project due to an increase in oral communication. Additionally, my intentions as a teacher were to become less dominating as communication was increased, but the opposite occurred. As a result of this research, I plan to continue to allow oral discourse to take place in my classroom much like it has in the past.
Resumo:
The purpose of this research was to assess preservice teachers self-efficacy at different stages of their educational career in an attempt to determine the extent to which self-efficacy beliefs may change over time. In addition, the critical incidents, which may contribute to changes in self-efficacy, were also investigated. The instrument used in the study was the Teaching Science as Inquiry (TSI) Instrument. The TSI Instrument was administered to 38 preservice elementary teachers to measure the self-efficacy beliefs of the teacher participants in regard to the teaching of science as inquiry. Based on the results and the associated data analysis, mean and median values demonstrate positive change for self-efficacy and outcome expectancy throughout the data collection period.
Resumo:
The purpose of this study was to investigate the questioning strategies of preservice teachers whenteaching science as inquiry. The guiding questions for this research were: In what ways do the questioning strategies of preservice teachers differ for male and female elementary students when teaching science as inquiry and how is Bloom’s Taxonomy evident within the questioning strategies of preservice teachers? Examination of the data indicated that participants asked a total of 4,158 questions to their elementary aged students. Of these questions, 974 (23%) were asked to boys, and 991 (24%) were asked to girls. The remaining questions (53%) were asked to the class as a whole, therefore no gender could be assigned to these questions. In relation to Bloom’s Taxonomy, 74% of the questions were basic knowledge, 15% were secondary comprehension, 2% were application, 4% were analysis, 1% were synthesis, and 3% were evaluation.
Resumo:
The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.
Resumo:
Mode of access: Internet.
Resumo:
The overall purpose of this collected papers dissertation was to examine the utility of a cognitive apprenticeship-based instructional coaching (CAIC) model for improving the science teaching efficacy beliefs (STEB) of preservice and inservice elementary teachers. Many of these teachers perceive science as a difficult subject and feel inadequately prepared to teach it. However, teacher efficacy beliefs have been noted as the strongest indicator of teacher quality, the variable most highly correlated with student achievement outcomes. The literature is scarce on strong, evidence-based theoretical models for improving STEB. This dissertation is comprised of two studies. STUDY #1 was a sequential explanatory mixed-methods study investigating the impact of a reformed CAIC elementary science methods course on the STEB of 26 preservice teachers. Data were collected using the Science Teaching Efficacy Belief Instrument (STEBI-B) and from six post-course interviews. A statistically significant increase in STEB was observed in the quantitative strand. The qualitative data suggested that the preservice teachers perceived all of the CAIC methods as influential, but the significance of each method depended on their unique needs and abilities. STUDY #2 was a participatory action research case study exploring the utility of a CAIC professional development program for improving the STEB of five Bahamian inservice teachers and their competency in implementing an inquiry-based curriculum. Data were collected from pre- and post-interviews and two focus group interviews. Overall, the inservice teachers perceived the intervention as highly effective. The scaffolding and coaching were the CAIC methods portrayed as most influential in developing their STEB, highlighting the importance of interpersonal relationship aspects in successful instructional coaching programs. The teachers also described the CAIC approach as integral in supporting their learning to implement the new inquiry-based curriculum. The overall findings hold important implications for science education reform, including its potential to influence how preservice teacher training and inservice teacher professional development in science are perceived and implemented. Additionally, given the noteworthy results obtained over the relatively short durations, CAIC interventions may also provide an effective means of achieving improvements in preservice and inservice teachers’ STEB more expeditiously than traditional approaches.
Resumo:
For the past several years, U.S. colleges and universities have faced increased pressure to improve retention and graduation rates. At the same time, educational institutions have placed a greater emphasis on the importance of enrolling more students in STEM (science, technology, engineering and mathematics) programs and producing more STEM graduates. The resulting problem faced by educators involves finding new ways to support the success of STEM majors, regardless of their pre-college academic preparation. The purpose of my research study involved utilizing first-year STEM majors’ math SAT scores, unweighted high school GPA, math placement test scores, and the highest level of math taken in high school to develop models for predicting those who were likely to pass their first math and science courses. In doing so, the study aimed to provide a strategy to address the challenge of improving the passing rates of those first-year students attempting STEM-related courses. The study sample included 1018 first-year STEM majors who had entered the same large, public, urban, Hispanic-serving, research university in the Southeastern U.S. between 2010 and 2012. The research design involved the use of hierarchical logistic regression to determine the significance of utilizing the four independent variables to develop models for predicting success in math and science. The resulting data indicated that the overall model of predictors (which included all four predictor variables) was statistically significant for predicting those students who passed their first math course and for predicting those students who passed their first science course. Individually, all four predictor variables were found to be statistically significant for predicting those who had passed math, with the unweighted high school GPA and the highest math taken in high school accounting for the largest amount of unique variance. Those two variables also improved the regression model’s percentage of correctly predicting that dependent variable. The only variable that was found to be statistically significant for predicting those who had passed science was the students’ unweighted high school GPA. Overall, the results of my study have been offered as my contribution to the literature on predicting first-year student success, especially within the STEM disciplines.
Resumo:
This article describes the purpose and activities of the project Promoting Mathematics Education in Rural Areas of Costa Rica. The activity has focused on two objectives. First, supporting and monitoring students who have expressed interest in studying a mathematics teacher. To achieve this, it has been working with students who have an ideal profile for the career, mainly from rural areas. The second objective is to conduct training workshops for high school in-service teachers, to strengthen and improve their knowledge in the area of mathematics. Among the results of the project, it can be highlighted a significant increase in the enrollment of students in the career of Mathematics Education in 2010 and 2011, and the training processes in the field of Real Functions of Real Variable and Geometry at different regional areas mostly rural as Aguirre, Sarapiquí, Coto, Buenos Aires, Limón, Cañas, Pérez Zeledón, Nicoya, Los Santos, Turrialba, Puriscal, Desamparados, San Carlos, Puntarenas, Limón, Liberia, Santa Cruz y Upala.