988 resultados para Sampling rates
Resumo:
High spatial resolution vertical profiles of pore-water chemistry have been obtained for a peatland using diffusive equilibrium in thin films (DET) gel probes. Comparison of DET pore-water data with more traditional depth-specific sampling shows good agreement and the DET profiling method is less invasive and less likely to induce mixing of pore-waters. Chloride mass balances as water tables fell in the early summer indicate that evaporative concentration dominates and there is negligible lateral flow in the peat. Lack of lateral flow allows element budgets for the same site at different times to be compared. The high spatial resolution of sampling also enables gradients to be observed that permit calculations of vertical fluxes. Sulfate concentrations fall at two sites with net rates of 1.5 and 5.0nmol cm− 3 day− 1, likely due to a dominance of bacterial sulfate reduction, while a third site showed a net gain in sulfate due to oxidation of sulfur over the study period at an average rate of 3.4nmol cm− 3 day− 1. Behaviour of iron is closely coupled to that of sulfur; there is net removal of iron at the two sites where sulfate reduction dominates and addition of iron where oxidation dominates. The profiles demonstrate that, in addition to strong vertical redox related chemical changes, there is significant spatial heterogeneity. Whilst overall there is evidence for net reduction of sulfate within the peatland pore-waters, this can be reversed, at least temporarily, during periods of drought when sulfide oxidation with resulting acid production predominates.
Resumo:
Passive samplers have been predominantly used to monitor environmental conditions in single volumes. However, measurements using a calibrated passive sampler- Solid Phase Microextraction (SPME) fibre, in three houses with cold pitched roof, successfully demonstrated the potential of the SPME fibre as a device for monitoring air movement in two volumes. The roofs monitored were pitched at 15° - 30° with insulation thickness varying between 200-300 mm on the ceiling. For effective analysis, two constant sources of volatile organic compounds were diffused steadily in the house. Emission rates and air movement from the house to the roof was predicted using developed algorithms. The airflow rates which were calibrated against conventional tracer gas techniques were introduced into a HAM software package to predict the effects of air movement on other varying parameters. On average it was shown from the in situ measurements that about 20-30% of air entering the three houses left through gaps and cracks in the ceiling into the roof. Although these field measurements focus on the airflows, it is associated with energy benefits such that; if these flows are reduced then significantly energy losses would also be reduced (as modelled) consequently improving the energy efficiency of the house. Other results illustrated that condensation formation risks were dependent on the airtightness of the building envelopes including configurations of their roof constructions.
Resumo:
The high computational cost of calculating the radiative heating rates in numerical weather prediction (NWP) and climate models requires that calculations are made infrequently, leading to poor sampling of the fast-changing cloud field and a poor representation of the feedback that would occur. This paper presents two related schemes for improving the temporal sampling of the cloud field. Firstly, the ‘split time-stepping’ scheme takes advantage of the independent nature of the monochromatic calculations of the ‘correlated-k’ method to split the calculation into gaseous absorption terms that are highly dependent on changes in cloud (the optically thin terms) and those that are not (optically thick). The small number of optically thin terms can then be calculated more often to capture changes in the grey absorption and scattering associated with cloud droplets and ice crystals. Secondly, the ‘incremental time-stepping’ scheme uses a simple radiative transfer calculation using only one or two monochromatic calculations representing the optically thin part of the atmospheric spectrum. These are found to be sufficient to represent the heating rate increments caused by changes in the cloud field, which can then be added to the last full calculation of the radiation code. We test these schemes in an operational forecast model configuration and find a significant improvement is achieved, for a small computational cost, over the current scheme employed at the Met Office. The ‘incremental time-stepping’ scheme is recommended for operational use, along with a new scheme to correct the surface fluxes for the change in solar zenith angle between radiation calculations.
Resumo:
Activities involving fauna monitoring are usually limited by the lack of resources; therefore, the choice of a proper and efficient methodology is fundamental to maximize the cost-benefit ratio. Both direct and indirect methods can be used to survey mammals, but the latter are preferred due to the difficulty to come in sight of and/or to capture the individuals, besides being cheaper. We compared the performance of two methods to survey medium and large-sized mammal: track plot recording and camera trapping, and their costs were assessed. At Jatai Ecological Station (S21 degrees 31`15 ``- W47 degrees 34`42 ``-Brazil) we installed ten camera traps along a dirt road directly in front of ten track plots, and monitored them for 10 days. We cleaned the plots, adjusted the cameras, and noted down the recorded species daily. Records taken by both methods showed they sample the local richness in different ways (Wilcoxon, T=231; p;;0.01). The track plot method performed better on registering individuals whereas camera trapping provided records which permitted more accurate species identification. The type of infra-red sensor camera used showed a strong bias towards individual body mass (R(2)=0.70; p=0.017), and the variable expenses of this method in a 10-day survey were estimated about 2.04 times higher compared to track plot method; however, in a long run camera trapping becomes cheaper than track plot recording. Concluding, track plot recording is good enough for quick surveys under a limited budget, and camera trapping is best for precise species identification and the investigation of species details, performing better for large animals. When used together, these methods can be complementary.
Resumo:
MCNP has stood so far as one of the main Monte Carlo radiation transport codes. Its use, as any other Monte Carlo based code, has increased as computers perform calculations faster and become more affordable along time. However, the use of Monte Carlo method to tally events in volumes which represent a small fraction of the whole system may turn to be unfeasible, if a straight analogue transport procedure (no use of variance reduction techniques) is employed and precise results are demanded. Calculations of reaction rates in activation foils placed in critical systems turn to be one of the mentioned cases. The present work takes advantage of the fixed source representation from MCNP to perform the above mentioned task in a more effective sampling way (characterizing neutron population in the vicinity of the tallying region and using it in a geometric reduced coupled simulation). An extended analysis of source dependent parameters is studied in order to understand their influence on simulation performance and on validity of results. Although discrepant results have been observed for small enveloping regions, the procedure presents itself as very efficient, giving adequate and precise results in shorter times than the standard analogue procedure. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A reciclagem agrícola do lodo de esgoto tem provocado o acúmulo de metais pesados no solo e na água, podendo atingir níveis tóxicos e causar danos às plantas cultivadas, aos animais e ao homem, por meio da cadeia trófica. Neste intuito foi desenvolvido o presente experimento, em condições de campo, entre 2000 e 2002, onde foram avaliados os efeitos da aplicação de lodo de esgoto por dois anos, sobre a extração de metais de transição (essenciais e não) pelo extrator DTPA em um Latossolo Vermelho distrófico (LVd) de textura média. As concentrações dos elementos metálicos: Mn, Fe, Cd, Ni, Co, Pb e Cr não foram detectados pelo método da absorção atômica na solução obtida com o extrator DTPA. A aplicação de lodo de esgoto causou inicialmente pequena elevação no pH do solo, posteriormente a diminuição do mesmo, e manteve-se próximo ao original. Foi possível concluir que, com a aplicação consecutiva do lodo, os teores extraíveis de Fe e Mn nas amostras de solos aumentaram gradativamente nos dois anos agrícolas, com as doses do lodo de esgoto aplicado, época de amostragens, e foram superiores ao tratamento testemunha. O extrator apresentou capacidade restrita para avaliação da fitodisponibilidade dos metais pesados decorrentes das baixas concentrações nas amostras de solo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
"How large a sample is needed to survey the bird damage to corn in a county in Ohio or New Jersey or South Dakota?" Like those in the Bureau of Sport Fisheries and Wildlife and the U.S.D.A. who have been faced with a question of this sort we found only meager information on which to base an answer, whether the problem related to a county in Ohio or to one in New Jersey, or elsewhere. Many sampling methods and rates of sampling did yield reliable estimates but the judgment was often intuitive or based on the reasonableness of the resulting data. Later, when planning the next study or survey, little additional information was available on whether 40 samples of 5 ears each or 5 samples of 200 ears should be examined, i.e., examination of a large number of small samples or a small number of large samples. What information is needed to make a reliable decision? Those of us involved with the Agricultural Experiment Station regional project concerned with the problems of bird damage to crops, known as NE-49, thought we might supply an ans¬wer if we had a corn field in which all the damage was measured. If all the damage were known, we could then sample this field in various ways and see how the estimates from these samplings compared to the actual damage and pin-point the best and most accurate sampling procedure. Eventually the investigators in four states became involved in this work1 and instead of one field we were able to broaden the geographical base by examining all the corn ears in 2 half-acre sections of fields in each state, 8 sections in all. When the corn had matured well past the dough stage, damage on each corn ear was assessed, without removing the ear from the stalk, by visually estimating the percent of the kernel surface which had been destroyed and rating it in one of 5 damage categories. Measurements (by row-centimeters) of the rows of kernels pecked by birds also were made on selected ears representing all categories and all parts of each field section. These measurements provided conversion factors that, when fed into a computer, were applied to the more than 72,000 visually assessed ears. The machine now had in its memory and could supply on demand a map showing each ear, its location and the intensity of the damage.
Resumo:
This study aims to analyse the degree of completeness of world inventory of the mite family Phytoseiidae and the factors that might determine the process of species description. The world data set includes 2,122 valid species described from 1839 to 2010. Species accumulation curves were analysed. The effect of localisation (latitude ranges) and body size on the species description patterns over space and time was assessed. A low proportion of species seems remain to be described, but this trend could be explained by a critical reduction in the number of specialists dedicated to the study of those mites. In addition, this trend refers to the areas where phytoseiids have been well studied around the world, and it may change considerably if the study of these mites would be intensified in some areas. The number of newly described species is lower near the tropics, and their body size is also smaller. Differences in body size were noted between the three sub-families of Phytoseiidae, the highest mean body lengths of adult females being observed for Amblyseiinae, the most diverse family. In the future, collections would have certainly to take into consideration such conclusions for instance in using more adequate optical equipment especially for field collections. The decrease in the number of phytoseiid mite described was confirmed and the factors that could explain such a trend are discussed. Information for improving further inventories is provided and discussed, especially in relation to sampling localization and study methods.
Resumo:
Dasyatis guttata has been target of artisanal fisheries in the coast of Bahia (Northeast Brazil) mainly by “arraieira” (gillnet) and “grozeira” (bottom long-line), but until now there is no stock assessment study. One of the important data for this knowledge is reliable indices of abundance. The aims of the present work are to: (1) estimate the best predictor for relative abundance (catch-per-unit-of-effort, CPUE), examining whether catch (production – kg) was related to: soak time of the gear, size of the gillnet or number of hooks, applying generalized linear model (GLM); (2) estimate the annual CPUE (kg/hooks and kg/m) averaged by gear; and (3) assess the temporal CPUE variance. Based on monthly sampling between January 2012 and January 2013, 222 landings by grozeira and 76 by arraiaiera were recorded in the two landing sites in Todos os Santos Bay, Bahia. A total of 14,550 kg (average = 44 kg/month) of D. guttata was captured. Models for both gears were highly significant (P < 0.0001). The analysis indicated that the most appropriate variable for CPUE analysis was the size of the gillnet (P < 0.001) and the number of hooks (P < 0.0001). Soak time of the gear was not significant for both gears (P = 0.4). High residual deviance expresses the complexity of the relations between ecosystem factors and other fisheries factors affecting relative abundance, which were not considered in this study. The average CPUE by grozeira was 6.39 kg/100 hooks ± 8.89 and by arraieira, 1.47 kg/100 m ± 1.66 over the year. Kruskal-Wallis test showed effect of the month on the mean grozeira CPUE (P = <0.001), but no effect (P = 0.096) on the mean arraieira CPUE. Grozeira CPUE values were highest in December and March, and lowest between May to August
Resumo:
Oceans are key sources and sinks in the global budgets of significant atmospheric trace gases, termed Volatile Organic Compounds (VOCs). Despite their low concentrations, these species have an important role in the atmosphere, influencing ozone photochemistry and aerosol physics. Surprisingly, little work has been done on assessing their emissions or transport mechanisms and rates between ocean and atmosphere, all of which are important when modelling the atmosphere accurately.rnA new Needle Trap Device (NTD) - GC-MS method was developed for the effective sampling and analysis of VOCs in seawater. Good repeatability (RSDs <16 %), linearity (R2 = 0.96 - 0.99) and limits of detection in the range of pM were obtained for DMS, isoprene, benzene, toluene, p-xylene, (+)-α-pinene and (-)-α-pinene. Laboratory evaluation and subsequent field application indicated that the proposed method can be used successfully in place of the more usually applied extraction techniques (P&T, SPME) to extend the suite of species typically measured in the ocean and improve detection limits. rnDuring a mesocosm CO2 enrichment study, DMS, isoprene and α-pinene were identified and quantified in seawater samples, using the above mentioned method. Based on correlations with available biological datasets, the effects of ocean acidification as well as possible ocean biological sources were investigated for all examined compounds. Future ocean's acidity was shown to decrease oceanic DMS production, possibly impact isoprene emissions but not affect the production of α-pinene. rnIn a separate activity, ocean - atmosphere interactions were simulated in a large scale wind-wave canal facility, in order to investigate the gas exchange process and its controlling mechanisms. Air-water exchange rates of 14 chemical species (of which 11 VOCs) spanning a wide range of solubility (dimensionless solubility, α = 0:4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were obtained under various turbulent (wind speed at ten meters height, u10 = 0:8 to 15ms-1) and surfactant modulated (two different sized Triton X-100 layers) surface conditions. Reliable and reproducible total gas transfer velocities were obtained and the derived values and trends were comparable to previous investigations. Through this study, a much better and more comprehensive understanding of the gas exchange process was accomplished. The role of friction velocity, uw* and mean square slope, σs2 in defining phenomena such as waves and wave breaking, near surface turbulence, bubbles and surface films was recognized as very significant. uw* was determined as the ideal turbulent parameter while σs2 described best the related surface conditions. A combination of both uw* and σs2 variables, was found to reproduce faithfully the air-water gas exchange process. rnA Total Transfer Velocity (TTV) model provided by a compilation of 14 tracers and a combination of both uw* and σs2 parameters, is proposed for the first time. Through the proposed TTV parameterization, a new physical perspective is presented which provides an accurate TTV for any tracer within the examined solubility range. rnThe development of such a comprehensive air-sea gas exchange parameterization represents a highly useful tool for regional and global models, providing accurate total transfer velocity estimations for any tracer and any sea-surface status, simplifying the calculation process and eliminating inevitable calculation uncertainty connected with the selection or combination of different parameterizations.rnrn
Resumo:
Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in tree-ring-based quantifications of forest growth and increase the comparability of datasets beyond individual studies, investigators, laboratories, and geographical boundaries.
Resumo:
BACKGROUND Pathogenic bacteria are often asymptomatically carried in the nasopharynx. Bacterial carriage can be reduced by vaccination and has been used as an alternative endpoint to clinical disease in randomised controlled trials (RCTs). Vaccine efficacy (VE) is usually calculated as 1 minus a measure of effect. Estimates of vaccine efficacy from cross-sectional carriage data collected in RCTs are usually based on prevalence odds ratios (PORs) and prevalence ratios (PRs), but it is unclear when these should be measured. METHODS We developed dynamic compartmental transmission models simulating RCTs of a vaccine against a carried pathogen to investigate how VE can best be estimated from cross-sectional carriage data, at which time carriage should optimally be assessed, and to which factors this timing is most sensitive. In the models, vaccine could change carriage acquisition and clearance rates (leaky vaccine); values for these effects were explicitly defined (facq, 1/fdur). POR and PR were calculated from model outputs. Models differed in infection source: other participants or external sources unaffected by the trial. Simulations using multiple vaccine doses were compared to empirical data. RESULTS The combined VE against acquisition and duration calculated using POR (VEˆacq.dur, (1-POR)×100) best estimates the true VE (VEacq.dur, (1-facq×fdur)×100) for leaky vaccines in most scenarios. The mean duration of carriage was the most important factor determining the time until VEˆacq.dur first approximates VEacq.dur: if the mean duration of carriage is 1-1.5 months, up to 4 months are needed; if the mean duration is 2-3 months, up to 8 months are needed. Minor differences were seen between models with different infection sources. In RCTs with shorter intervals between vaccine doses it takes longer after the last dose until VEˆacq.dur approximates VEacq.dur. CONCLUSION The timing of sample collection should be considered when interpreting vaccine efficacy against bacterial carriage measured in RCTs.
Resumo:
Monthly delta18O records of 2 coral colonies (Porites cf. lutea and P. cf. nodifera) from different localities (Aqaba and Eilat) from the northern Gulf of Aqaba, Red Sea, were calibrated with recorded sea surface temperatures (SST) between 1988 and 2000. The results show high correlation coefficients between SST and delta18O. Seasonal variations of coral delta18O in both locations could explain 91% of the recorded SST. Different delta18O/SST relations from both colonies and from the same colonies were obtained, indicating that delta18O from coral skeletons were subject to an extension rate effect. Significant delta18O depletions are associated with high extension rates and higher values with low extension rates. The relation between coral skeletal delta18O and extension rate is not linear and can be described by a simple exponential model. An inverse relationship extends over extension rates from 1 to 5 mm/yr, while for more rapidly growing corals and portions of colonies the relation is constant and the extension rate does not appear to have a significant effect. We recommend that delta18O values be obtained from fast-growing corals or from portions in which the isotopic disequilibrium is fairly constant (extension rate >5 mm/yr). The results show that interspecific differences in corals may produce a significant delta18O profile offset between 2 colonies that is independent of environmental and extension-rate effects. We conclude that the rate of skeletal extension and the species of coral involved have an important influence on coral delta18O and must be considered when using delta18O records for paleoclimatic reconstructions.