890 resultados para Salted Meet Manufacture


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

User authentication is essential for accessing computing resources, network resources, email accounts, online portals etc. To authenticate a user, system stores user credentials (user id and password pair) in system. It has been an interested field problem to discover user password from a system and similarly protecting them against any such possible attack. In this work we show that passwords are still vulnerable to hash chain based and efficient dictionary attacks. Human generated passwords use some identifiable patterns. We have analysed a sample of 19 million passwords, of different lengths, available online and studied the distribution of the symbols in the password strings. We show that the distribution of symbols in user passwords is affected by the native language of the user. From symbol distributions we can build smart and efficient dictionaries, which are smaller in size and their coverage of plausible passwords from Key-space is large. These smart dictionaries make dictionary based attacks practical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonequilibrium process for cracking ethane and n-buthane in the manufacture of ethene has been analytically and numerically investigated in a Heavi-side function temperature field and through a normal shock wave. The results demonstrate that, while the reaction temperature increases, the maximum value of ethene yield is increased, and the optimal reaction duration is sharply shortened. For the identical initial reaction temperature, the maximum value of ethene yield through a stationary normal shock wave is less than that in a Heavi-side function temperature field. However, the ethene consumption after the maximum value in the former case is less than that in the latter. Higher ethene yield will be obtained by using the gasdynamic heating method than by using the current methods.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processing simulation is at the bottom of the coral technology of VM and is also difficult due to the complexity of mechanism and diversity of parameters. Previously much research has been mainly carried out on the geometrical simulation or physical simulation respectively. The aim of this paper is to study the processing simulation in laser surface treatment based on the mechanism, put forward the architecture of the whole processing simulation and give the models of the processing. As a result the data structure layers in the whole simulation is presented.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: