964 resultados para SUSCEPTIBILITY GENE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neuregulin-1 gene (NRG1) at chromosome 8p21-22 has been implicated as a schizophrenia susceptibility gene in Icelandic, Scottish, Irish and mixed UK populations. The shared ancestry between these populations led us to investigate the NRG1 polymorphisms and appropriate marker haplotypes for linkage and/or association to schizophrenia in the Irish study of high-density schizophrenia families (ISHDSF). Neither single-point nor multi-point linkage analysis of NRG1 markers gave evidence for linkage independent of our pre-existing findings telomeric on 8p. Analysis of linkage disequilibrium (LD) across the 252 kb interval encompassing the 7 marker core Icelandic/Scottish NRG1 haplotype revealed two separate regions of modest LD, comprising markers SNP8NRG255133, SNP8NRG249130 and SNP8NRG243177 (telomeric) and microsatellites 478B14-428, 420M9-1395, D8S1810 and 420M9-116I12 (centromeric). From single marker analysis by TRANSMIT and FBAT we found no evidence for association with schizophrenia for any marker. Haplotype analysis for the three SNPs in LD region 1 and, separately, the four microsatellites in LD region 2 (analyzed in overlapping 2-marker windows), showed no evidence for overtransmission of specific haplotypes to affected individuals. We therefore conclude that if NRG1 does contain susceptibility alleles for schizophrenia, they impact quite weakly on risk in the ISHDSF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BRCA1 is a major breast and ovarian cancer susceptibility gene, with mutations in this gene predisposing women to a very high risk of developing breast and ovarian tumours. BRCA1 primarily functions to maintain genomic stability via critical roles in DNA repair, cell cycle checkpoint control, transcriptional regulation, apoptosis and mRNA splicing. As a result, BRCA1 mutations often result in defective DNA repair, genomic instability and sensitivity to DNA damaging agents. BRCA1 carries out these different functions through its ability to interact, and form complexes with, a vast array of proteins involved in multiple cellular processes, all of which are considered to contribute to its function as a tumour suppressor. This review discusses and highlights recent research into the functions of BRCA1-related protein complexes and their roles in maintaining genomic stability and tumour suppression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BRCA1 (breast-cancer susceptibility gene 1) is a tumour suppressor, implicated in the hereditary predisposition to breast and ovarian cancer. BRCA1 has been implicated in a number of cellular processes including DNA repair and recombination, cell cycle checkpoint control, chromatin remodelling and ubiquitination. In addition, substantial data now exist to suggest a role for BRCA1 in transcriptional regulation; BRCA1 has been shown to interact with the Pol II holoenzyme complex and to interact with multiple transcription factors, such as p53 and c-Myc. We have previously identified a range of BRCA1 transcriptional targets and have linked these to specific cellular pathways, including cell cycle checkpoint activation and apoptosis. Current research is focused on the transcriptional mechanisms that underpin the association of BRCA1 deficiency with increased sensitivity to DNA damage-based chemotherapy and resistance to spindle poisons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The breast cancer susceptibility gene BRCA1 encodes a protein implicated in the cellular response to DNA damage, with postulated roles in homologous recombination as well as transcriptional regulation. To identify downstream target genes, we established cell lines with tightly regulated inducible expression of BRCA1. High-density oligonucleotide arrays were used to analyze gene expression profiles at various times following BRCA1 induction. A major BRCA1 target is the DNA damage-responsive gene GADD45. Induction of BRCA1 triggers apoptosis through activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), a signaling pathway potentially linked to GADD45 gene family members. The p53-independent induction of GADD45 by BRCA1 and its activation of JNK/SAPK suggest a pathway for BRCA1-induced apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Le principal objectif de cette étude est de mesurer l’effet du GDF-5 sur l’homéostasie du cartilage. Le GDF-5 est un gène de susceptibilité de l’OA faisant partie de la famille des BMPs et qui favorise la synthèse du cartilage. Le but de notre étude a été de déterminer l’effet du GDF-5 sur le métabolisme catabolique ainsi que sur l’équilibre global des chondrocytes, principalement au niveau de l’Aggrécan. Méthode : Des chondrocytes arthrosiques canins et humains OA ont été exposés au GDF-5. L’expression des ARNm et des protéines a été analysée afin d’évaluer la production de l’Aggrécan et le ratio Col-II/Col-I au niveau des facteurs anaboliques et du phénotype. Pour le catabolisme, l’expression et l’activité des aggrécanases ADAMTS-4 et ADAMTS-5 ont été mesurées. Les épitopes NITEGE et CTX-II ont aussi été quantifiés dans le liquide synovial canin après des injections intraarticulaires de GDF-5. Résultats : Le GDF-5 provoque une augmentation de l’activité cellulaire des chondrocytes canins et humains. Pour les ARNm et l’expression protéique, le GDF-5 augmente l’expression de l’Aggrécan alors que les facteurs cataboliques le diminuent. Le phénotype reste inchangé en présence du produit, sauf à haute dose où on augmente le ColI. L’activité des aggrécanases diminue puisque l’épitope NITEGE diminue alors que le CTX-II augmente dans l’articulation. Conclusion : En somme, les facteurs anaboliques du cartilage sont favorisés, alors que les facteurs cataboliques sont diminués par le GDF-5. Cette action double permet d’illustrer l’effet du GDF-5, le classant comme un potentiel médicament modifiant la maladie de l’OA qui mérite d’être étudiée.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genetics of psoriasis and benign migratory glossitis has relationship with the major HLA. The authors reviewed the literature about the association between HLA with psoriasis and benign migratory glossitis. HLA-Cw6 presents a particularly strong association, irrespective of different racial or ethnic groups, suggesting that Cw6 itself, or a closely linked gene in strong linkage disequilibrium, is the major HLA-linked susceptibility gene for psoriasis. The white Brazilian population shows the established associations between psoriasis and the HLA antigens Cw6, B13 and B17 reported in several Caucasian populations, and shows association between benign migratory glossitis and HLA-Cw6.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rock-wallaby genus Petrogale comprises a group of habitat-specialist macropodids endemic to Australia. Their restriction to rocky outcrops, with infrequent interpopulation dispersal, has been suggested as the cause of their recent and rapid diversification. Molecular phylogenetic relationships within and among species of Petrogale were analysed using mitochondrial (cytochrome oxidase c subunit 1, cytochrome b. NADH dehydrogenase subunit 2) and nuclear (omega-globin intron, breast and ovarian cancer susceptibility gene) sequence data with representatives that encompassed the morphological and chromosomal variation within the genus, including for the first time both Petrogale concinna and Petrogale purpureicollis. Four distinct lineages were identified, (1) the brachyotis group, (2) Petrogale persephone, (3) Petrogale xanthopus and (4) the lateralis-penicillata group. Three of these lineages include taxa with the ancestral karyotype (2n = 22). Paraphyletic relationships within the brachyotis group indicate the need for a focused phylogeographic study. There was support for P. purpureicollis being reinstated as a full species and P. concinna being placed within Petrogale rather than in the monotypic genus Peradorcas. Bayesian analyses of divergence times suggest that episodes of diversification commenced in the late Miocene-Pliocene and continued throughout the Pleistocene. Ancestral state reconstructions suggest that Petrogale originated in a mesic environment and dispersed into more arid environments, events that correlate with the timing of radiations in other arid zone vertebrate taxa across Australia. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hirschsprung disease is a congenital form of aganglionic megacolon that results from cristopathy. Hirschsprung disease usually occurs as a sporadic disease, although it may be associated with several inherited conditions, such as multiple endocrine neoplasia type 2. The rearranged during transfection (RET) proto-oncogene is the major susceptibility gene for Hirschsprung disease, and germline mutations in RET have been reported in up to 50% of the inherited forms of Hirschsprung disease and in 15-20% of sporadic cases of Hirschsprung disease. The prevalence of Hirschsprung disease in multiple endocrine neoplasia type 2 cases was recently determined to be 7.5% and the cooccurrence of Hirschsprung disease and multiple endocrine neoplasia type 2 has been reported in at least 22 families so far. It was initially thought that Hirschsprung disease could be due to disturbances in apoptosis or due to a tendency of the mutated RET receptor to be retained in the Golgi apparatus. Presently, there is strong evidence favoring the hypothesis that specific inactivating haplotypes play a key role in the fetal development of congenital megacolon/Hirschsprung disease. In the present study, we report the genetic findings in a novel family with multiple endocrine neoplasia type 2: a specific RET haplotype was documented in patients with Hirschsprung disease associated with medullary thyroid carcinoma, but it was absent in patients with only medullary thyroid carcinoma. Despite the limited number of cases, the present data favor the hypothesis that specific haplotypes not linked to RET germline mutations are the genetic causes of Hirschsprung disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

I disturbi dello spettro autistico (DSA) ed il ritardo mentale (RM) sono caratterizzati da un’eziologia genetica complessa ed eterogenea. Grazie ai recenti sviluppi nella ricerca genomica, è stato possibile dimostrare il ruolo di numerose copy number variants (CNVs) nella patogenesi di questi disturbi, anche se nella maggior parte dei casi l’eziologia rimane ancora sconosciuta. Questo lavoro riguarda l’identificazione e la caratterizzazione dei CNVs in famiglie con DSA e RM. E’ stata studiata una microdelezione in 7q31 che coinvolge i geni IMMP2L e DOCK4, trasmessa dalla madre con dislessia a due figli con autismo ed una figlia con dislessia. Nella stessa famiglia segrega una seconda microdelezione in 2q14 che inattiva il gene CNTNAP5 ed è trasmessa dal padre (con tratti autistici) ai due figli con autismo. Abbiamo quindi ipotizzato che i geni DOCK4 e CNTNAP5 potessero essere implicati, rispettivamente, nella suscettibilità a dislessia e DSA. Lo screening di numerosi individui affetti ha supportato la nostra ipotesi, con l’identificazione di una nuova microdelezione di DOCK4 che segrega con la dislessia, e 3 nuove varianti missenso in CNTNAP5 in individui con autismo. Dall’analisi genomica comparativa su array (aCGH) di individui con RM, è stata identificata una delezione nella regione 7q31.32, che coinvolge il gene CADPS2, in due fratelli con RM e tratti autistici, probabilmente ereditata dalla madre. Lo screening di mutazione di questo gene in individui con autismo o RM, ha portato all’identificazione di 3 varianti non sinonime, assenti nei controlli, ed ereditate per via materna. Poiché CADPS2 risiede in una regione genomica che contiene loci soggetti ad imprinting, abbiamo ipotizzato che il gene CADPS2 possa essere anch’esso caratterizzato da imprinting, con espressione monoallelica materna. Lo studio di espressione di CADPS2 in cellule del sangue ha avvalorato questa ipotesi, implicando perciò CADPS2 come un nuovo gene di suscettibilità per il RM e DSA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TCF7L2 is a type 2 diabetes susceptibility gene and downstream effector of canonical wingless-type MMTV integration site family (WNT) signalling. However, it is unknown whether this pathway is active in adult pancreatic islets in vivo, and whether it is regulated in obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Darier's disease is a rare, inherited autosomal dominant skin disorder caused by a mutation in the sarcoendoplasmatic reticulum calcium transporter (SERCA)-2-gene. In a number of pedigrees, Darier's disease closely relates with affective disorder. The most likely hypothesis for this is a susceptibility gene for affective disorder near the SERCA-2-gene. A 6.5-megabase region could be identified as a susceptibility locus. This region constitutes a susceptability locus also in affective disorder without Darier's disease. The underlying gene has not yet been identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The IL23R gene has been identified as a susceptibility gene for inflammatory bowel disease (IBD) in the North American population. The aim of our study was to test this association in a large German IBD cohort and to elucidate potential interactions with other IBD genes as well as phenotypic consequences of IL23R variants. METHODS: Genomic DNA from 2670 Caucasian individuals including 833 patients with Crohn's disease (CD), 456 patients with ulcerative colitis (UC), and 1381 healthy unrelated controls was analyzed for 10 IL23R SNPs. Genotyping included the NOD2 variants p.Arg702Trp, p.Gly908Arg, and p.Leu1007fsX1008 and polymorphisms in SLC22A4/OCTN1 (1672 C-->T) and SLC22A5/OCTN2 (-207 G-->C). RESULTS: All IL23R gene variants analyzed displayed highly significant associations with CD. The strongest association was found for the SNP rs1004819 [P = 1.92x10(-11); OR 1.56; 95 % CI (1.37-1.78)]. 93.2% of the rs1004819 TT homozygous carriers as compared to 78% of CC wildtype carriers had ileal involvement [P = 0.004; OR 4.24; CI (1.46-12.34)]. The coding SNP rs11209026 (p.Arg381Gln) was protective for CD [P = 8.04x10(-8); OR 0.43; CI (0.31-0.59)]. Similar, but weaker associations were found in UC. There was no evidence for epistasis between the IL23R gene and the CD susceptibility genes CARD15 and SLC22A4/5. CONCLUSION: IL23R is an IBD susceptibility gene, but has no epistatic interaction with CARD15 and SLC22A4/5. rs1004819 is the major IL23R variant associated with CD in the German population, while the p.Arg381Gln IL23R variant is a protective marker for CD and UC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND J-wave syndromes have emerged conceptually to encompass the pleiotropic expression of J-point abnormalities including Brugada syndrome (BrS) and early repolarization syndrome (ERS). KCNJ8, which encodes the cardiac K(ATP) Kir6.1 channel, recently has been implicated in ERS following identification of the functionally uncharacterized missense mutation S422L. OBJECTIVE The purpose of this study was to further explore KCNJ8 as a novel susceptibility gene for J-wave syndromes. METHODS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open reading frame/splice site mutational analysis of KCNJ8 was performed in 101 unrelated patients with J-wave syndromes, including 87 with BrS and 14 with ERS. Six hundred healthy individuals were examined to assess the allelic frequency for all variants detected. KCNJ8 mutation(s) was engineered by site-directed mutagenesis and coexpressed heterologously with SUR2A in COS-1 cells. Ion currents were recorded using whole-cell configuration of the patch-clamp technique. RESULTS One BrS case and one ERS case hosted the identical missense mutation S422L, which was reported previously. KCNJ8-S422L involves a highly conserved residue and was absent in 1,200 reference alleles. Both cases were negative for mutations in all known BrS and ERS susceptibility genes. K(ATP) current of the Kir6.1-S422L mutation was increased significantly over the voltage range from 0 to 40 mV compared to Kir6.1-WT channels (n = 16-21; P <.05). CONCLUSION These findings further implicate KCNJ8 as a novel J-wave syndrome susceptibility gene and a marked gain of function in the cardiac K(ATP) Kir6.1 channel secondary to KCNJ8-S422L as a novel pathogenic mechanism for the phenotypic expression of both BrS and ERS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for approximately 75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding alpha1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A missense mutation (A390V-SNTA1) was found in a patient with recurrent syncope and markedly prolonged QT interval (QTc, 530 ms). SNTA1 links neuronal nitric oxide synthase (nNOS) to the nNOS inhibitor plasma membrane Ca-ATPase subtype 4b (PMCA4b); SNTA1 also is known to associate with the cardiac sodium channel SCN5A. By using a GST-fusion protein of the C terminus of SCN5A, we showed that WT-SNTA1 interacted with SCN5A, nNOS, and PMCA4b. In contrast, A390V-SNTA1 selectively disrupted association of PMCA4b with this complex and increased direct nitrosylation of SCN5A. A390V-SNTA1 expressed with SCN5A, nNOS, and PMCA4b in heterologous cells increased peak and late sodium current compared with WT-SNTA1, and the increase was partially inhibited by NOS blockers. Expression of A390V-SNTA1 in cardiac myocytes also increased late sodium current. We conclude that the A390V mutation disrupted binding with PMCA4b, released inhibition of nNOS, caused S-nitrosylation of SCN5A, and was associated with increased late sodium current, which is the characteristic biophysical dysfunction for sodium-channel-mediated LQTS (LQT3). These results establish an SNTA1-based nNOS complex attached to SCN5A as a key regulator of sodium current and suggest that SNTA1 be considered a rare LQTS-susceptibility gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming alpha-subunit associated with 1 or more auxiliary beta-subunits. Four different beta-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. METHODS AND RESULTS We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Na(vbeta)-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel alpha-subunit (hNa(V)1.5). Compared with the wild-type, L179F-beta4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-beta4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. CONCLUSIONS We provide the seminal report of SCN4B-encoded Na(vbeta)4 as a novel LQT3-susceptibility gene.