954 resultados para SURFACE PHASE-TRANSITIONS
Resumo:
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.
Resumo:
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.
Resumo:
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.
Resumo:
Using numerical micromagnetics we have studied the ground state magnetization distribution of square planar ferromagnetic elements ("nanostructures"). As the element size is reduced from 250 to 2 nm at constant thickness (2-35 nm), we find that the magnetization distribution undergoes up to three phase transitions involving as many as three different near single domain states. One of these phase transitions is analogous to the reorientation phase transition observed in continuous ultrathin magnetic films. © 1998 American Institute of Physics.
Resumo:
Two of the most important questions in mantle dynamics are investigated in three separate studies: the influence of phase transitions (studies 1 and 2), and the influence of temperature-dependent viscosity (study 3).
(1) Numerical modeling of mantle convection in a three-dimensional spherical shell incorporating the two major mantle phase transitions reveals an inherently three-dimensional flow pattern characterized by accumulation of cold downwellings above the 670 km discontinuity, and cylindrical 'avalanches' of upper mantle material into the lower mantle. The exothermic phase transition at 400 km depth reduces the degree of layering. A region of strongly-depressed temperature occurs at the base of the mantle. The temperature field is strongly modulated by this partial layering, both locally and in globally-averaged diagnostics. Flow penetration is strongly wavelength-dependent, with easy penetration at long wavelengths but strong inhibition at short wavelengths. The amplitude of the geoid is not significantly affected.
(2) Using a simple criterion for the deflection of an upwelling or downwelling by an endothermic phase transition, the scaling of the critical phase buoyancy parameter with the important lengthscales is obtained. The derived trends match those observed in numerical simulations, i.e., deflection is enhanced by (a) shorter wavelengths, (b) narrower up/downwellings (c) internal heating and (d) narrower phase loops.
(3) A systematic investigation into the effects of temperature-dependent viscosity on mantle convection has been performed in three-dimensional Cartesian geometry, with a factor of 1000-2500 viscosity variation, and Rayleigh numbers of 10^5-10^7. Enormous differences in model behavior are found, depending on the details of rheology, heating mode, compressibility and boundary conditions. Stress-free boundaries, compressibility, and temperature-dependent viscosity all favor long-wavelength flows, even in internally heated cases. However, small cells are obtained with some parameter combinations. Downwelling plumes and upwelling sheets are possible when viscosity is dependent solely on temperature. Viscous dissipation becomes important with temperature-dependent viscosity.
The sensitivity of mantle flow and structure to these various complexities illustrates the importance of performing mantle convection calculations with rheological and thermodynamic properties matching as closely as possible those of the Earth.
Resumo:
In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.
The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.
Resumo:
The quality of a thermoelectric material is judged by the size of its temperature de- pendent thermoeletric-figure-of-merit (zT ). Superionic materials, particularly Zn4Sb3 and Cu2Se, are of current interest for the high zT and low thermal conductivity of their disordered, superionic phase. In this work it is reported that the super-ionic materials Ag2Se, Cu2Se and Cu1.97Ag0.03Se show enhanced zT in their ordered, normal ion-conducting phases. The zT of Ag2Se is increased by 30% in its ordered phase as compared to its disordered phase, as measured just below and above its first order phase transition. The zT ’s of Cu2Se and Cu1.97Ag0.03Se both increase by more than 100% over a 30 K temperatures range just below their super-ionic phase transitions. The peak zT of Cu2Se is 0.7 at 406 K and of Cu1.97Ag0.03Se is 1.0 at 400 K. In all three materials these enhancements are due to anomalous increases in their Seebeck coefficients, beyond that predicted by carrier concentration measurements and band structure modeling. As the Seebeck coefficient is the entropy transported per carrier, this suggests that there is an additional quantity of entropy co-transported with charge carriers. Such co-transport has been previously observed via co-transport of vibrational entropy in bipolaron conductors and spin-state entropy in NaxCo2O4. The correlation of the temperature profile of the increases in each material with the nature of their phase transitions indicates that the entropy is associated with the thermodynamcis of ion-ordering. This suggests a new mechanism by which high thermoelectric performance may be understood and engineered.
Resumo:
There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.
In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:
- For a given number of measurements, can we reliably estimate the true signal?
- If so, how good is the reconstruction as a function of the model parameters?
More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.
Resumo:
The principle aims of this thesis include the development of models of sublimation and melting from first principles and the application of these models to the rare gases.
A simple physical model is constructed to represent the sublimation of monatomic elements. According to this model, the solid and gas phases are two states of a single physical system. The nature of the phase transition is clearly revealed, and the relations between the vapor pressure, the latent heat, and the transition temperature are derived. The resulting theory is applied to argon, krypton, and xenon, and good agreement with experiment is found.
For the melting transition, the solid is represented by an anharmonic model and the liquid is described by the Percus-Yevick approximation. The behavior of the liquid at high densities is studied on the isotherms kT/∈ = 1.3, 1.8, and 2.0, where k is Boltzmann's constant, T is the temperature, and e is the well depth of the Lennard-Jones 12-6 pair potential. No solutions of the PercusYevick equation were found for ρσ3 above 1.3, where ρ is the particle density and σ is the radial parameter of the Lennard-Jones potential. The liquid structure is found to be very different from the solid structure near the melting line. The liquid pressures are about 50 percent low for experimental melting densities of argon. This discrepancy gives rise to melting pressures up to twice the experimental values.
Resumo:
A diffuse interface phase field model is proposed for the unified analysis of diffusive and displacive phase transitions under nonisothermal conditions. Two order parameters are used for the description of the phenomena: one is related to the solute mass fraction and the other to the strain. The model governing equations come from the balance of linear momentum, the solute mass balance (which will lead to the Cahn-Hilliard equation) and the balance of internal energy. Thermodynamic restrictions allow to define constitutive relations for the thermodynamic forces and for the mechanical and chemical dissipations. Numerical tests carried out at different values of the initial temperature show that the model is able to describe the main features of both the displacive and the diffusive phase transitions, as well as their effect on the temperature. © 2010, Advanced Engineering Solutions.
Resumo:
We report optically induced phase transtions occurring in two different host ferroelectric liquid crystals; SCE13 a multicomponentmixture optimised for room temperature performance, and CE8 a single component liquid crystal. These act as host liquid crystals for a novel guest azo dye, which can be made to photoisomerise using low power density U.V. illumination, resulting in dramatic changes in sample properties. We have shown that the magnitude of spontaneous polarisation of systems can be isothermally and reversibly induced or reduced, with the consequent appearance or disappearance of optical switching hysteresis. We discuss the parameters controlling the behaviour of the systems under U.V. illumination and suggest mechansims by which the transitions may occur. © 1993, Taylor & Francis Group, LLC. All rights reserved.
Resumo:
By means of the second derivative of the ground-state and first-excited energy, the quantum phase transitions (QPTs) for the distorted diamond chain (DDC) with ferromagnetic and antiferromagnetic frustrated interactions and the trimerized case are investigated, respectively. Our results show the plentiful quantum phases owing to the spin interaction competitions in the model. Meanwhile, by using the transfer-matrix renormalization-group technique, we study the two-site thermal entanglement of the DDC model in the thermodynamic limit for a further understanding of the QPTs.