951 resultados para SURFACE MICROSCOPY
Resumo:
The aim of this in vitro study was to investigate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation on dentinal collagen by transmission electron microscopy and to analyze the resin-dentin interface by scanning electron microscopy. A tensile bond strength test was also applied. Specimens from 69 sound human third molars were randomly divided into three groups: control (no laser), and two irradiated groups, laser 250 (250 mJ/2 Hz) and laser 400 (400 mJ/4 Hz). Then, specimens were restored with two adhesive systems, an etch-and-rinse or a self-etch system. Although ultrastructural examination showed a modified surface in the irradiated dentin, there was no statistical difference in bond strength values between the laser groups and controls (P < 0.05). In conclusion, the use of Er:YAG laser for ablating human dentin did not alter the main adhesion parameters when compared with those obtained by conventional methods, thus reinforcing its use in restorative dentistry.
Resumo:
This study compared ultrasonic chemical vapor deposition (CVD)-coated tip (CVDentus #8.1117-1; Clorovale Diamantes Ind. e Com. Ltda Epp, Sao Jose dos Campos, SP, Brazil) versus high-speed (#FG700L) and low-speed (#699) carbide burs for apicoectomy, evaluating the time required for resection and analyzing the root-end surfaces by scanning electron microscopy. Thirty extracted human premolars had the canals instrumented and obturated and were randomly assigned to 3 groups (n = 10), according to the instrument used for root-end resection. The time required for resection of the apical 2 mm of each root was recorded. The resected apical segments were dried, sputter coated with gold, and examined with a scanning electron microscope at X 350 magnification. A four-point (0-3) scoring system was used to evaluate the apical surface smoothness. The results were analyzed statistically by the Kruskal-Wallis test and two-by-two comparisons analyses were performed using the Miller test. The significance level was set at 5%. Root-end resection with the high-speed bur was significantly faster (p < 0.05) compared with the low-speed bur and CVD tip. The carbide burs produced significantly smoother root-end surfaces than the CVD tip (p < 0.05). The low-speed bur produced the smoothest root-end surfaces, whereas the roughest and most irregular root ends (p < 0.05) were obtained with the CVD tip. However, no statistically significant difference (p > 0.05) was found between the high- and low-speed burs regarding the surface roughness of the resected root ends (p > 0.05). In conclusion, under the tested conditions, ultrasonic root-end resection took a longer time and resulted in rougher surfaces compared with the use of carbide burs at both high and low speed. (J Endod 2009;35:265-268)
Resumo:
This study evaluated the surface integrity of sutures after immersion in mouthrinse or water, by scanning electron microscopy (SEM) analysis. Pieces of resorbable suture remaining after oral surgery were immediately collected. Twelve pieces each of catgut, chromed catgut, and polyglactin 910 were divided into four groups and immersed in pure mouthrinse, mouthrinse diluted in water at 1:1 and 1:2, or water (positive control), for 24 h. Three pieces each of new sutures were used as negative control. Specimens were placed on stubs and sputter coated with gold for SEM analysis. Observation of experimental groups and comparison with controls revealed that immersion in the mouthrinse at different dilutions did not alter their surface; slight, nonsignificant changes were found in some experimental specimens yet also in the positive control group. It was concluded that immersion of resorbable sutures in water or non-alcoholic benzydamine hydrochloride mouthrinse did not produce any significant change; therefore, this mouthrinse may be safely employed after oral surgery.
Resumo:
The aims of this study were 1) to verify how close to the theoretically presumed areas are the areas of enamel microbiopsies carried out in vivo or in exfoliated teeth; 2) to test whether the etching solution penetrates beyond the tape borders: 3) to test whether the etching solution demineralizes the enamel in depth. 24 shed upper primary central incisors were randomly divided into two groups: the Rehydrated Teeth Group and the Dry Teeth Group. An enamel microbiopsy was performed, and the enamel microbiopsies were then analyzed by Scanning Electron Microscopy (SEMI) and Polarizing Microscopy (PM). Quantitative birefringence measurements were performed. The ""true"" etched area was determined by measuring the etched enamel using the NIH Image analysis program. Enamel birefringence was compared using the paired t test. There was a statistically significant difference when the etched areas in the Rehydrated teeth were compared with those of the Dry teeth (p = 0.04). The etched areas varied from -11.6% to 73.5% of the presumed area in the Rehydrated teeth, and from 6.6% to 61.3% in the Dry teeth. The mean percentage of variation in each group could be used as a correction factor for the etched area. Analysis of PM pictures shows no evidence of in-depth enamel demineralization by the etching solution. No statistically significant differences in enamel birefringence were observed between values underneath and outside the microbiopsy area in the same tooth, showing that no mineral loss occurred below the enamel superficial layer. Our data showed no evidence of in-depth enamel demineralization by the etching solution used in the enamel microbiopsy proposed for primary enamel. This study also showed a variation in the measured diameter of the enamel microbiopsy in nineteen teeth out of twenty four, indicating that in most cases the etching solution penetrated beyond the tape borders. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: There are no reported studies comparing different parameter settings of the CO(2) laser and irradiation direction considering their effect on the morphology of radicular dentine surface. Purpose: To evaluate the alterations of radicular dentine (cervical, middle, and apical thirds) irradiated with CO(2) laser at different potencies and irradiation directions. Study Design: Roots of 35 canines were prepared and randomly distributed according to the laser potency: GI: no laser treatment (control) (n = 5); GII, 2 W (n = 10); GIII: 4 W (n = 10); GIV: 6 W (n = 10). Each group (excepting GI) was divided in two subgroups according to the irradiation distance (n = 5): (A) parallel and (B) perpendicular to the root canal walls. The roots were splited longitudinally and analyzed by scanning electron microscopy in a qualiquatitative way. The scores were submitted to Kruskal-Wallis and Dunn`s tests. Results: No significant statistical differences were observed among root canal thirds (P > 0.05). The specimens irradiated with 2 W were statistically different (P < 0.05) from those irradiated with 4 and 6 W, which were statistically similar between themselves (P > 0.05). With 2, 4, and 6 W at in parallel irradiation and 2 W in perpendicular direction, the surface showed a fissured aspect. With 4 W in perpendicular direction and 6 W in parallel and perpendicular direction, surface was modified by laser action and exhibited fused areas. Conclusions: The intensity of the effects is dependent on the laser-irradiation dosimetries. Alterations were more intense when higher parameters were used. Microsc. Res. Tech. 72:737-743, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Drosophila slit is a secreted protein involved in midline patterning. Three vertebrate orthologs of the fly slit gene, Slit1, 2, and 3, have been isolated. Each displays overlapping, but distinct, patterns of expression in the developing vertebrate central nervous system, implying conservation of function. However, vertebrate Slit genes are also expressed in nonneuronal tissues where their cellular locations and functions are unknown. In this study, we characterized the cellular distribution and processing of mammalian Slit3 gene product, the least evolutionarily conserved of the vertebrate Slit genes, in kidney epithelial cells, using both cellular fractionation and immunolabeling. Slit3, but not Slit2, was predominantly localized within the mitochondria. This localization was confirmed using immunoelectron microscopy in cell lines and in mouse kidney proximal tubule cells. In confluent epithelial monolayers, Slit3 was also transported to the cell surface. However, we found no evidence of Slit3 proteolytic processing similar to that seen for Slit2. We demonstrated that Slit3 contains an NH2-terminal mitochondrial localization signal that can direct a reporter green fluorescent protein to the mitochondria. The equivalent region from Slit1 cannot elicit mitochondrial targeting. We conclude that Slit3 protein is targeted to and localized at two distinct sites within epithelial cells: the mitochondria, and then, in more confluent cells, the cell surface. Targeting to both locations is driven by specific NH2-terminal sequences. This is the first examination of Slit protein localization in nonneuronal cells, and this study implies that Slit3 has potentially unique functions not shared by other Slit proteins.
Resumo:
The ultrastructure of mature Lagorchestes hirsutus spermatozoa is described for the first time, revealing unusual aspects of sperm structure in macropodid species. The sperm head is ovoid rather than cuneiform, lacks a ventral nuclear groove and has an acrosomal distribution over approximately 85-90% of its dorsal surface. Immediately adjacent to the nuclear membrane the peripheral nucleoplasm in most spermatozoa form an irregular series of distinctive evaginations previously not described in the spermatozoa of any other marsupial. The midpiece is extremely thickened and short, containing no helical network or peripheral plasma membrane specializations. Axonemal structure is unspecialized with no connecting lamellae; dense outer fibres are closely adherent to axonemal doublets. The sperm morphology of this species is highly aberrant in comparison to other macropod taxa and supports the retention of Lagorchestes as a distinctive genus. In light of this new information, skeletal and serological data should be re-evaluated to determine the true taxonomic and phylogenetic position of this species.
Resumo:
Localization of signaling complexes to specific micro-domains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent micro-domain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.
Resumo:
Two methods were compared for determining the concentration of penetrative biomass during growth of Rhizopus oligosporus on an artificial solid substrate consisting of an inert gel and starch as the sole source of carbon and energy. The first method was based on the use of a hand microtome to make sections of approximately 0.2- to 0.4-mm thickness parallel to the substrate surface and the determination of the glucosamine content in each slice. Use of glucosamine measurements to estimate biomass concentrations was shown to be problematic due to the large variations in glucosamine content with mycelial age. The second method was a novel method based on the use of confocal scanning laser microscopy to estimate the fractional volume occupied by the biomass. Although it is not simple to translate fractional volumes into dry weights of hyphae due to the lack of experimentally determined conversion factors, measurement of the fractional volumes in themselves is useful for characterizing fungal penetration into the substrate. Growth of penetrative biomass in the artificial model substrate showed two forms of growth with an indistinct mass in the region close to the substrate surface and a few hyphae penetrating perpendicularly to the surface in regions further away from the substrate surface. The biomass profiles against depth obtained from the confocal microscopy showed two linear regions on log-linear plots, which are possibly related to different oxygen availability at different depths within the substrate. Confocal microscopy has the potential to be a powerful tool in the investigation of fungal growth mechanisms in solid-state fermentation. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Chromium dioxide (CrO2) has been extensively used in the magnetic recording industry. However, it is its ferromagnetic half-metallic nature that has more recently attracted much attention, primarily for the development of spintronic devices. CrO2 is the only stoichiometric binary oxide theoretically predicted to be fully spin polarized at the Fermi level. It presents a Curie temperature of ∼ 396 K, i.e. well above room temperature, and a magnetic moment of 2 mB per formula unit. However an antiferromagnetic native insulating layer of Cr2O3 is always present on the CrO2 surface which enhances the CrO2 magnetoresistance and might be used as a barrier in magnetic tunnel junctions.
Resumo:
The reuse of waste fluid catalytic cracking (FCC) catalyst as partial surrogate for cement can reduce the environmental impact of both the oil-refinery and cement production industries [1,2]. FCC catalysts can be considered as pozzolanic materials since in the presence of water they tend to chemically react with calcium hydroxide to produce compounds possessing cementitious properties [3,4]. In addition, partial replacement of cement with FCC catalysts can enhance the performance of pastes and mortars, namely by improving their compressive strength [5,6]. In the present work the reaction of waste FCC catalyst with Ca(OH)2 has been investigated after a curing time of 28 days by scanning electron microscopy (SEM) with electron backscattered signal (BSE) combined with X-ray energy dispersive spectroscopy (EDS) carried out with a JEOL JSM 7001F instrument operated at 15 kV coupled to an INCA pentaFetx3 Oxford spectrometer. The polished cross-sections of FCC particles embedded in resin have also been evaluated by atomic force microscopy (AFM) in contact mode (CM) using a NanoSurf EasyScan 2 instrument. The SEM/EDS results revealed that an inward migration of Ca occurred during the reaction. A weaker outward migration of Si and Al was also apparent (Fig. 1). The migration of Ca was not homogeneous and tended to follow high-diffusivity paths within the porous waste FCC catalyst particles. The present study suggests that the porosity of waste FCC catalysts is key for the migration/reaction of Ca from the surrounding matrix, playing an important role in the pozzolanic activity of the system. The topography images and surface roughness parameters obtained by atomic force microscopy can be used to infer the local porosity in waste FCC catalyst particles (Fig. 2).
Resumo:
JORNADAS DE ELECTROQUÍMICA E INOVAÇÃO 2013
Resumo:
This paper reports an unusual pattern of serological HBV markers and the presence of HBsAg/anti-HBs immune complexes in serum samples from two patients with fulminant hepatitis from the Brazilian Western Amazon Basin. The diagnosis was made by both serologic tests and demonstration of antigen/antibody complexes by transmission electron microscopy. Concurrent Delta virus superinfection is also discussed.
Resumo:
The exceptional properties of localised surface plasmons (LSPs), such as local field enhancement and confinement effects, resonant behavior, make them ideal candidates to control the emission of luminescent nanoparticles. In the present work, we investigated the LSP effect on the steady-state and time-resolved emission properties of quantum dots (QDs) by organizing the dots into self-assembled dendrite structures deposited on plasmonic nanostructures. Self-assembled structures consisting of water-soluble CdTe mono-size QDs, were developed on the surface of co-sputtered TiO2 thin films doped with Au nanoparticles (NPs) annealed at different temperatures. Their steady-state fluorescence properties were probed by scanning the spatially resolved emission spectra and the energy transfer processes were investigated by the fluorescence lifetime imaging (FLIM) microscopy. Our results indicate that a resonant coupling between excitons confined in QDs and LSPs in Au NPs located beneath the self-assembled structure indeed takes place and results in (i) a shift of the ground state luminescence towards higher energies and onset of emission from excited states in QDs, and (ii) a decrease of the ground state exciton lifetime (fluorescence quenching).
Resumo:
Purpose: To determine the relationship of goblet cell density (GCD) with tear function and ocular surface physiology. Methods: This was a cross-sectional study conducted in 35 asymptomatic subjects with mean age 23.8±3.6 years. Tear film assessment, conjunctiva and cornea examination were done in each subject. Conjunctival impression cytology was performed by applying Nitrocellulose Millipore MFTM-Membrane filter over the superior bulbar conjunctiva. The filter paper was than fixed with 96% ethanol and stained with Periodic Acid Schiff, Hematoxylin and Eosin. GCD was determined by optical microscopy. Relation between GCD and Schirmer score, tear break-up time (TBUT), bulbar redness, limbal redness and corneal staining was determined. Results: The mean GCD was 151±122 cells/mm2. GCD was found higher in eyes with higher Schirmer score but it was not significant (p = 0.75). There was a significant relationship ofGCDwith TBUT (p = 0.042). GCD was not correlated with bulbar redness (p = 0.126), and limbal redness (p = 0.054) as well as corneal staining (p = 0.079). No relationship of GCD with age and gender of the subjects (p > 0.05) was observed. Conclusion: GCD was found correlated with TBUT but no significant correlation was found with the aqueous portion of the tear, limbal as well as bulbar redness and corneal staining.