976 resultados para STRESS PROTEINS
Resumo:
The aims of this study were to evaluate whether air pollution during pre-natal and post-natal phases change habituation and short-term discriminative memories and if oxidants are involved in this process. As secondary objectives, it was to evaluate if the change of filtered to nonfiltered environment could protect the cortex of rats against oxidative stress as well as to modify the behavior of these animals. Wistar, male rats were divided into four groups (n = 12/group): pre and post-natal exposure until adulthood to filtered air (FA); pre-natal period to nonfiltered air (NFA-FA); until (21st post-natal day) and post-natal to filtered air until adulthood (PND21); prenatal to filtered air until PND21 and post-natal to nonfiltered air until adulthood (FA-NFA); pre and post-natal to nonfiltered air (NFA). After 150 days of air pollution exposure, animals were tested in the spontaneous object recognition test to evaluate short-term discriminative and habituation memories. Rats were euthanized; blood was collected for metal determination; cortex dissected for oxidative stress evaluation. There was a significant increase in malondialdehyde (MDA) levels in the NFA group when compared to other groups (FA: 1.730 +/- 0.217; NFA-FA: 1.101 +/- 0.217; FA-NFA: 1.014 +/- 0.300; NFA: 5.978 +/- 1.920 nmol MDA/mg total proteins; p = 0.007). NFA group presented a significant decrease in short-term discriminative (FA: 0.603 +/- 0.106; NFA-FA: 0.669 +/- 0.0666; FA-NFA: 0.374 +/- 0.178; NFA: -0.00631 +/- 0.106 sec; p = 0.006) and an improvement in habituation memories when compared to other groups. Therefore, exposure to air pollution during both those periods impairs short-term discriminative memory and cortical oxidative stress may mediate this process.
Resumo:
Metarhizium spp. is an important worldwide group of entomopathogenic fungi used as an interesting alternative to chemical insecticides in programs of agricultural pest and disease vector control. Metarhizium conidia are important in fungal propagation and also are responsible for host infection. Despite their importance, several aspects of conidial biology, including their proteome, are still unknown. We have established conidial and mycelial proteome reference maps for Metarhizium acridum using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS). In all, 1130 +/- 102 and 1200 +/- 97 protein spots were detected in ungerminated conidia and fast-growing mycelia, respectively. Comparison of the two protein-expression profiles reveled that only 35 % of the protein spots were common to both developmental stages. Out of 94 2-DE protein spots (65 from conidia, 25 from mycelia and two common to both) analyzed using mass spectrometry, seven proteins from conidia, 15 from mycelia and one common to both stages were identified. The identified protein spots exclusive to conidia contained sequences similar to known fungal stress-protector proteins (such as heat shock proteins (HSP) and 6-phosphogluconate dehydrogenase) plus the fungal allergen Alt a 7, actin and the enzyme cobalamin-independent methionine synthase. The identified protein spots exclusive to mycelia included proteins involved in several cell housekeeping biological processes. Three proteins (HSP 90, 6-phosphogluconate dehydrogenase and allergen Alt a 7) were present in spots in conidial and mycelial gels, but they differed in their locations on the two gels. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aim: Hyperglycemia in diabetes mellitus (DM) may be one of the most important factors responsible for the development of oxidative stress, which promotes the main complications in DM patients. Therefore, this study evaluated if the hyperglycemia could be related to oxidative stress biomarkers, lipid profile, and renal function in type 2 diabetes patients without clinic complications. Methods: Plasmatic malondialdehyde (MDA), serum protein carbonyl (PCO), serum creatinine levels, microalbuminuria, glycated hemoglobin, and lipid profile were analyzed in 37 type 2 diabetic patients and 25 subjects with no diabetes. Results: Serum creatinine levels were within the reference values, but microalbuminuria presented increased levels in all the patients compared with controls (P G 0.05) and above of the reference values. The MDA, PCO, low- density lipoprotein, and triglyceride levels showed positive correlation with microalbuminuria levels. Moreover, glycated hemoglobin presented positive correlation with MDA, PCO, and microalbuminuria levels. Conclusions: The hyperglycemia could be responsible for the increase of the microalbuminuria levels and for the oxidation process in lipids and proteins in DM patients. Therefore, we suggested that the microvascular lesion is a direct consequence from hyperglycemia and an indirect one from the increased oxidative stress. Malondialdehyde and protein carbonyl levels could be suggested as additional biochemical evaluation to verify tissue damage in type 2 DM patients.
Resumo:
An Escherichia coli cell-free transcription/translation system was used to explore the high-level incorporation Of L-3,4-dihydroxyphenylalanine (DOPA) into proteins by replacing tyrosine with DOPA in the reaction mixtures. ESI-MS showed specific incorporation of DOPA in place of tyrosine. More than 90% DOPA incorporation at each tyrosine site was achieved, allowing the recording of clean N-15-HSQC NMR spectra. A redox-staining method specific for DOPA was shown to provide a sensitive and generally applicable method for assessing the cell-free production of proteins. Of four proteins produced in soluble form in the presence of tyrosine, two resulted in insoluble aggregates in the presence of high levels of DOPA. DOPA has been found in human proteins, often in association with various disease states that implicate protein aggregation and/or misfolding. Our results suggest that misfolded and aggregated proteins may result, in principle, from ribosome-mediated misincorporation of intracellular DOPA accumulated due to oxidative stress. High-yield cell-free protein expression systems are uniquely suited to obtain rapid information on solubility and aggregation of nascent polypeptide chains.
Resumo:
Aims Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. Methods and results Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. Conclusion Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Resumo:
Reactive oxygen species oxidize proteins and modulate the proteasomal system in muscle-wasting cancer cachexia. On day 5 (D5), day 10 (D10), and day 14 (D14) after tumor implantation, skeletal muscle was evaluated. Carbonylated proteins and thiobarbituric acid reactive substances were measured. Chemiluminescence was employed for lipid hydroperoxide estimation. Glutathione, superoxide dismutase, and total radical antioxidant capacity were evaluated. The proteasomal system was assessed by mRNA atrogin-1 expression. Increased muscle wasting, lipid hydroperoxide, and superoxide dismutase, and decreased glutathione levels and total radical antioxidant capacity, were found on D5 in accordance with increased mRNA atrogin-1 expression. All parameters were significantly modified in animals treated with alpha-tocopherol. The elevation in aldehylde levels and carbonylated proteins observed on D10 were reversed by cc-tocopherol treatment. Oxidative stress may trigger signal transduction of the proteasomal system and cause protein oxidation. These pathways may be associated with the mechanism of muscle wasting that occurs in cancer cachexia. Muscle Nerve 42: 950-958, 2010
Resumo:
Tick bites may trigger acute phase responses. Positive and negative acute phase proteins were measured in infested cattle genetically resistant and susceptible to ticks. During heavier infestations levels of haptoglobin increased significantly in susceptible bovines; levels of serum amyloid A increased in resistant bovines; levels of alpha-l-acid glycoprotein decreased significantly in resistant bovines; levels of transferrin decreased significantly in susceptible bovines. In conclusion, tick infestations trigger acute phase responses and enhancement of specific acute phase proteins differs according to the genetic composition of hosts. Acute phase proteins may constitute useful biological signatures for monitoring the stress induced by tick infestations. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Oxidative stress and lipid peroxidation, associated with ethanol, are considered important pathogenic mechanisms in the formation of hepatic steatosis. The objective of the present study was to assess the effects of supplementation with lecithin and vitamin E on the oxidatives stress and hepatic steatosis induced in rats by chronic ethanol consumption. Fifty-two Wistar rats were divided into 4 experimental groups: control (AIN-93 diet), ethanol group (control diet plus a 20% hydroalcoholic solution), ethanol + vitamin E group (addition of 0.6% vitamin E to the diet plus a 20% hydroalcoholic solution); ethanol + soy lecithin group (addition of 5 % soy lecithin to the diet plus a 20% hydroalcoholic solution). At the end of 4 weeks the animals were sacrificed. The results showed a significantly smaller number of animals (p < 0.05) classified as having a low degree of steatosis in the ethanol + vitamin E group and ethanol + soy lecithin group compared to the ethanol group. In addition, the ethanol + soy lecithin group had a significantly lower concentration of hepatic fat (p < 0.05) than the ethanol group. A significant reduction of hepatic TBARS concentration (p < 0.05) was detected in the ethanol + vitamin E group compared to the ethanol group. Hepatic carbonyl concentration was significantly lower in the ethanol + soy lecithin group. However, hepatic GSH was significantly lower in the ethanol + vitamin E and ethanol + soy lecithin groups compared to the control group. In conclusion, supplementation with lecithin and vitamin E attenuated the hepatotoxic effects of chronic ethanol intake and contributed to a reduction of the progression of steatosis status.
Resumo:
This study describes increased sarcolemmal permeability and myofilamentar damage that occur together with lipid peroxidation and protein nitration in the myocardium in severe sepsis induced by cecal ligation and puncture. Male C57BL/6 mice were submitted to moderate and severe septic injury and sham operation. Using light and laser confocal microscopy, diffuse foci of myocytolysis associated with focal disruption of the actin/myosin contractile apparatus could be seen in hearts with severe septic injury. The myocardial expressions of the sarcomeric proteins myosin and actin were downregulated by both severe and moderate injuries. The detection of albumin staining in the cytoplasm of myocytes to evaluate sarcolemmal permeability provided evidence of severe and mild injury of the plasma membrane in hearts with severe and moderate septic injury, respectively. The administration of a superoxide scavenger caused marked reduction of sarcolemmal permeability, indicating the involvement of free radicals in its genesis. On electron microscopy, these changes were seen to correspond to spread blocks of a few myocytes with fragmentation and dissolution of myofibrils, intracellular edema, and, occasionally, rupture of the sarcolemma. In addition, oxidative damage to lipids, using anti-4-hydroxynonenal, an indicator of oxidative stress and disruption of plasma membrane lipids, and to proteins, using antinitrotyrosine, a stable biomarker of peroxynitrite-mediated protein nitration, was demonstrated. These findings make plausible the hypothesis that increased sarcolemmal permeability might be a primary event in myocardial injury in severe sepsis possibly due to oxidative damage to lipids and proteins that could precede phenotypic changes that characterize a septic cardiomyopathy.
Resumo:
Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background. The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X-L, pro-apoptotic Bax and Bad), Methods. Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) Or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (West ern immunoblots, densitometry, immunoelectron microscopy). Results. Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X-L and Bax, but not Bcl-2 or Bad, was identified in control distal cells, Bcl-X-L and Bax had nonsignificant increases (P > 0.05) in these cells. Bcl-2, Bax, and Bcl-X-L, but not Bad, were endogenously expressed in control proximal cells. Bcl-X-L was significantly decreased in treated proximal cultures (P < 0.05), with Bas and Bcl-2 having nonsignificant increases (P > 0.05). Immunoelectron microscopy localization indicated that control and treated hut surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X-L from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-XL expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. Conclusion. The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X-L in proximal cells, as well as translocation of Bcl-X-L protein to mitochondria within the surviving distal cells.
Resumo:
Smooth muscle cells (SMC) exhibit a functional plasticity, modulating from the mature phenotype in which the primary function is contraction, to a less differentiated state with increased capacities for motility, protein synthesis, and proliferation. The present study determined, using Western analysis, double-label immunofluorescence and confocal microscopy, whether changes in phenotypic expression of rabbit aortic SMC in culture could be correlated with alterations in expression and distribution of structural proteins. Contractile state SMC (days 1 and 3 of primary culture) showed distinct sorting of proteins into subcellular domains, consistent with the theory that the SMC structural machinery is compartmentalised within the cell. Proteins specialised for contraction (alpha -SM actin, SM-MHC, and calponin) were highly expressed in these cells and concentrated in the upper central region of the cell. Vimentin was confined to the body of the cell, providing support for the contractile apparatus but not co-localising with it. In line with its role in cell attachment and motility, beta -NM actin was localised to the cell periphery and basal cortex. The dense body protein alpha -actinin was concentrated at the cell periphery, possibly stabilising both contractile and motile apparatus. Vinculin-containing focal adhesions were well developed, indicating the cells' strong adhesion to substrate. In synthetic state SMC (passages 2-3 of culture), there was decreased expression of contractile and adhesion (vinculin) proteins with a concomitant increase in cytoskeletal proteins (beta -non-muscle [NM] actin and vimentin). These quantitative changes in structural proteins were associated with dramatic chan-es in their distribution. The distinct compartmentalisation of structural proteins observed in contractile state SMC was no longer obvious, with proteins more evenly distributed throughout die cytoplasm to accommodate altered cell function. Thus, SMC phenotypic modulation involves not only quantitative changes in contractile and cytoskeletal proteins, but also reorganisation of these proteins. Since the cytoskeleton acts as a spatial regulator of intracellular signalling, reorganisation of the cytoskeleton may lead to realignment of signalling molecules, which, in turn, may mediate the changes in function associated with SMC phenotypic modulation. (C) 2001 Wiley-Liss, Inc.
Resumo:
psaA encodes a 37-kDa pneumococcal lipoprotein which is part of an ABC Mn(II) transport complex. Streptococcus pneumoniae D39 psaA mutants have previously been shown to be significantly less virulent than wild-type D39, but the mechanism underlying the attenuation has not been resolved. In this study, we have shown that psaA and psaD mutants are highly sensitive to oxidative stress, i.e., to superoxide and hydrogen peroxide, which might explain why they are less virulent than the wild-type strain. Our investigations revealed altered expression of the key oxidative-stress response enzymes superoxide dismutase and NADH oxidase in psaA and psaD mutants, suggesting that PsaA and PsaD may play important roles in the regulation of expression of oxidative-stress response enzymes and intracellular redox homeostasis.
Resumo:
Atm gene-disrupted mice recapitulate the majority of characteristics observed in patients with the genetic disorder ataxia-telangiectasia (A-T). However, although they exhibit defects in neuromotor function and a distinct neurological phenotype, they do not show the progressive neurodegeneration seen in human patients, but there is evidence that ataxia-telangiectasia mutated ( Atm)-deficient animals have elevated levels of oxidized macromolecules and some neuropathology. We report here that in vitro survival of cerebellar Purkinje cells from both Atm knock-out and Atm knock-in mice was significantly reduced compared with their wild-type littermates. Although most of the Purkinje neurons from wild-type mice exhibited extensive dendritic elongation and branching under these conditions, most neurons from Atm-deficient mice had dramatically reduced dendritic branching. An antioxidant ( isoindoline nitroxide) prevented Purkinje cell death in Atm-deficient mice and enhanced dendritogenesis to wild-type levels. Furthermore, administration of the antioxidant throughout pregnancy had a small enhancing effect on Purkinje neuron survival in Atm gene-disrupted animals and protected against oxidative stress in older animals. These data provide strong evidence for a defect in the cerebellum of Atm-deficient mice and suggest that oxidative stress contributes to this phenotype.
Resumo:
Sco proteins are found in mitochondria and in a variety of oxidase positive bacteria. Although Sco is required for the formation of the Cu-A centre in a cytochrome oxidase of the aa(3) type, it was observed that oxidases with a Cu-A centre are not present in many bacteria that contain a Sco homologue. Two bacteria of this type are the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. The sco genes of N. gonorrhoeae strain 1291 and N. meningitidis strain MC58 were cloned, inactivated by inserting a kanamycin resistance cassette and used to make knockout mutants by allelic exchange. Both N. gonorrhoeae and N. meningitidis sco mutants were highly sensitive to oxidative killing by paraquat, indicating that Sco is involved in protection against oxidative stress in these bacteria. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.