969 resultados para STOCHASTIC PROCESSES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We establish a refined version of the Second Law of Thermodynamics for Langevin stochastic processes describing mesoscopic systems driven by conservative or non-conservative forces and interacting with thermal noise. The refinement is based on the Monge-Kantorovich optimal mass transport and becomes relevant for processes far from quasi-stationary regime. General discussion is illustrated by numerical analysis of the optimal memory erasure protocol for a model for micron-size particle manipulated by optical tweezers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is increasing recognition that stochastic processes regulate highly predictable patterns of gene expression in developing organisms, but the implications of stochastic gene expression for understanding haploinsufficiency remain largely unexplored. We have used simulations of stochastic gene expression to illustrate that gene copy number and expression deactivation rates are important variables in achieving predictable outcomes. In gene expression systems with non-zero expression deactivation rates, diploid systems had a higher probability of uninterrupted gene expression than haploid systems and were more successful at maintaining gene product above a very low threshold. Systems with relatively rapid expression deactivation rates (unstable gene expression) had more predictable responses to a gradient of inducer than systems with slow or zero expression deactivation rates (stable gene expression), and diploid systems were more predictable than haploid, with or without dosage compensation. We suggest that null mutations of a single allele in a diploid organism could decrease the probability of gene expression and present the hypothesis that some haploinsufficiency syndromes might result from an increased susceptibility to stochastic delays of gene initiation or interruptions of gene expression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bibliography: p. 12.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A stochastic model for solute transport in aquifers is studied based on the concepts of stochastic velocity and stochastic diffusivity. By applying finite difference techniques to the spatial variables of the stochastic governing equation, a system of stiff stochastic ordinary differential equations is obtained. Both the semi-implicit Euler method and the balanced implicit method are used for solving this stochastic system. Based on the Karhunen-Loeve expansion, stochastic processes in time and space are calculated by means of a spatial correlation matrix. Four types of spatial correlation matrices are presented based on the hydraulic properties of physical parameters. Simulations with two types of correlation matrices are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Il presente lavoro ha lo scopo di comprendere i processi sottesi ai pattern di coesistenza tra le specie di invertebrati sorgentizi, distinguendo tra dinamiche stocastiche e deterministiche. Le sorgenti sono ecosistemi complessi e alcune loro caratteristiche (ad esempio l’insularità, la stabilità termica, la struttura ecotonale “a mosaico”, la frequente presenza di specie rare ed endemiche, o l’elevata diversità in taxa) le rendono laboratori naturali utili allo studio dei processi ecologici, tra cui i processi di assembly. Al fine di studiare queste dinamiche è necessario un approccio multi-scala, per questo motivi sono state prese in considerazione tre scale spaziali. A scala locale è stato compiuto un campionamento stagionale su sette sorgenti (quattro temporanee e tre permanenti) del Monte Prinzera, un affioramento ofiolitico vicino alla città di Parma. In questa area sono stati valutati l’efficacia e l’impatto ambientale di diversi metodi di campionamento e sono stati analizzati i drivers ecologici che influenzano le comunità. A scala più ampia sono state campionate per due volte 15 sorgenti della regione Emilia Romagna, al fine di identificare il ruolo della dispersione e la possibile presenza di un effetto di niche-filtering. A scala continentale sono state raccolte informazioni di letteratura riguardanti sorgenti dell’area Paleartica occidentale, e sono stati studiati i pattern biogeografici e l’influenza dei fattori climatici sulle comunità. Sono stati presi in considerazione differenti taxa di invertebrati (macroinvertebrati, ostracodi, acari acquatici e copepodi), scegliendo tra quelli che si prestavano meglio allo studio dei diversi processi in base alle loro caratteristiche biologiche e all’approfondimento tassonomico raggiungibile. I campionamenti biologici in sorgente sono caratterizzati da diversi problemi metodologici e possono causare impatti sugli ambienti. In questo lavoro sono stati paragonati due diversi metodi: l’utilizzo del retino con un approccio multi-habitat proporzionale e l’uso combinato di trappole e lavaggio di campioni di vegetazione. Il retino fornisce dati più accurati e completi, ma anche significativi disturbi sulle componenti biotiche e abiotiche delle sorgenti. Questo metodo è quindi raccomandato solo se il campionamento ha come scopo un’approfondita analisi della biodiversità. D’altra parte l’uso delle trappole e il lavaggio della vegetazione sono metodi affidabili che presentano minori impatti sull’ecosistema, quindi sono adatti a studi ecologici finalizzati all’analisi della struttura delle comunità. Questo lavoro ha confermato che i processi niche-based sono determinanti nello strutturare le comunità di ambienti sorgentizi, e che i driver ambientali spiegano una rilevante percentuale della variabilità delle comunità. Infatti le comunità di invertebrati del Monte Prinzera sono influenzate da fattori legati al chimismo delle acque, alla composizione e all’eterogeneità dell’habitat, all’idroperiodo e alle fluttuazioni della portata. Le sorgenti permanenti mostrano variazioni stagionali per quanto riguarda le concentrazioni dei principali ioni, mentre la conduttività, il pH e la temperatura dell’acqua sono più stabili. È probabile che sia la stabilità termica di questi ambienti a spiegare l’assenza di variazioni stagionali nella struttura delle comunità di macroinvertebrati. L’azione di niche-filtering delle sorgenti è stata analizzata tramite lo studio della diversità funzionale delle comunità di ostracodi dell’Emilia-Romagna. Le sorgenti ospitano più del 50% del pool di specie regionale, e numerose specie sono state rinvenute esclusivamente in questi habitat. Questo è il primo studio che analizza la diversità funzionale degli ostracodi, è stato quindi necessario stilare una lista di tratti funzionali. Analizzando il pool di specie regionale, la diversità funzionale nelle sorgenti non è significativamente diversa da quella misurata in comunità assemblate in maniera casuale. Le sorgenti non limitano quindi la diversità funzionale tra specie coesistenti, ma si può concludere che, data la soddisfazione delle esigenze ecologiche delle diverse specie, i processi di assembly in sorgente potrebbero essere influenzati da fattori stocastici come la dispersione, la speciazione e le estinzioni locali. In aggiunta, tutte le comunità studiate presentano pattern spaziali riconoscibili, rivelando una limitazione della dispersione tra le sorgenti, almeno per alcuni taxa. Il caratteristico isolamento delle sorgenti potrebbe essere la causa di questa limitazione, influenzando maggiormente i taxa a dispersione passiva rispetto a quelli a dispersione attiva. In ogni caso nelle comunità emiliano-romagnole i fattori spaziali spiegano solo una ridotta percentuale della variabilità biologica totale, mentre tutte le comunità risultano influenzate maggiormente dalle variabili ambientali. Il controllo ambientale è quindi prevalente rispetto a quello attuato dai fattori spaziali. Questo risultato dimostra che, nonostante le dinamiche stocastiche siano importanti in tutte le comunità studiate, a questa scala spaziale i fattori deterministici ricoprono un ruolo prevalente. I processi stocastici diventano più influenti invece nei climi aridi, dove il disturbo collegato ai frequenti eventi di disseccamento delle sorgenti provoca una dinamica source-sink tra le diverse comunità. Si è infatti notato che la variabilità spiegata dai fattori ambientali diminuisce all’aumentare dell’aridità del clima. Disturbi frequenti potrebbero provocare estinzioni locali seguite da ricolonizzazioni di specie provenienti dai siti vicini, riducendo la corrispondenza tra gli organismi e le loro richieste ambientali e quindi diminuendo la quantità di variabilità spiegata dai fattori ambientali. Si può quindi concludere che processi deterministici e stocastici non si escludono mutualmente, ma contribuiscono contemporaneamente a strutturare le comunità di invertebrati sorgentizi. Infine, a scala continentale, le comunità di ostracodi sorgentizi mostrano chiari pattern biogeografici e sono organizzate lungo gradienti ambientali principalmente collegati altitudine, latitudine, temperatura dell’acqua e conducibilità. Anche la tipologia di sorgente (elocrena, reocrena o limnocrena) è influente sulla composizione delle comunità. La presenza di specie rare ed endemiche inoltre caratterizza specifiche regioni geografiche.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diffusion processes are a family of continuous-time continuous-state stochastic processes that are in general only partially observed. The joint estimation of the forcing parameters and the system noise (volatility) in these dynamical systems is a crucial, but non-trivial task, especially when the system is nonlinear and multimodal. We propose a variational treatment of diffusion processes, which allows us to compute type II maximum likelihood estimates of the parameters by simple gradient techniques and which is computationally less demanding than most MCMC approaches. We also show how a cheap estimate of the posterior over the parameters can be constructed based on the variational free energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The assessment of the reliability of systems which learn from data is a key issue to investigate thoroughly before the actual application of information processing techniques to real-world problems. Over the recent years Gaussian processes and Bayesian neural networks have come to the fore and in this thesis their generalisation capabilities are analysed from theoretical and empirical perspectives. Upper and lower bounds on the learning curve of Gaussian processes are investigated in order to estimate the amount of data required to guarantee a certain level of generalisation performance. In this thesis we analyse the effects on the bounds and the learning curve induced by the smoothness of stochastic processes described by four different covariance functions. We also explain the early, linearly-decreasing behaviour of the curves and we investigate the asymptotic behaviour of the upper bounds. The effect of the noise and the characteristic lengthscale of the stochastic process on the tightness of the bounds are also discussed. The analysis is supported by several numerical simulations. The generalisation error of a Gaussian process is affected by the dimension of the input vector and may be decreased by input-variable reduction techniques. In conventional approaches to Gaussian process regression, the positive definite matrix estimating the distance between input points is often taken diagonal. In this thesis we show that a general distance matrix is able to estimate the effective dimensionality of the regression problem as well as to discover the linear transformation from the manifest variables to the hidden-feature space, with a significant reduction of the input dimension. Numerical simulations confirm the significant superiority of the general distance matrix with respect to the diagonal one.In the thesis we also present an empirical investigation of the generalisation errors of neural networks trained by two Bayesian algorithms, the Markov Chain Monte Carlo method and the evidence framework; the neural networks have been trained on the task of labelling segmented outdoor images.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 65C05

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60K15, 60K20, 60G20,60J75, 60J80, 60J85, 60-08, 90B15.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.

In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.

By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.

Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.