947 resultados para STOCHASTIC MODELS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002-2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of -6.5% to -7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002-2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A birth-death process is subject to mass annihilation at rate β with subsequent mass immigration occurring into state j at rateα j . This structure enables the process to jump from one sector of state space to another one (via state 0) with transition rate independent of population size. First, we highlight the difficulties encountered when using standard techniques to construct both time-dependent and equilibrium probabilities. Then we show how to overcome such analytic difficulties by means of a tool developed in Chen and Renshaw (1990, 1993b); this approach is applicable to many processes whose underlying generator on E\{0} has known probability structure. Here we demonstrate the technique through application to the linear birth-death generator on which is superimposed an annihilation/immigration process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on extensive research on reinforcing steel corrosion in concrete in the past decades, it is now possible to estimate the effect of the progression of reinforcement corrosion in concrete infrastructure on its structural performance. There are still areas of considerable uncertainty in the models and in the data available, however This paper uses a recently developed model for reinforcement corrosion in concrete to improve the estimation process and to indicate the practical implications. In particular stochastic models are used to estimate the time likely to elapse for each phase of the whole corrosion process: initiation, corrosion-induced concrete cracking, and structural strength reduction. It was found that, for practical flexural structures subject to chloride attacks, corrosion initiation may start quite early in their service life. It was also found that, once the structure is considered to be unserviceable due to corrosion-induced cracking, there is considerable remaining service life before the structure can be considered to have become unsafe. The procedure proposed in the paper has the potential to serve as a rational tool for practitioners, operators, and asset managers to make decisions about the optimal timing of repairs, strengthening, and/or rehabilitation of corrosion-affected concrete infrastructure. Timely intervention has the potential to prolong the service life of infrastructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies the dynamic pricing problem of selling fixed stock of perishable items over a finite horizon, where the decision maker does not have the necessary historic data to estimate the distribution of uncertain demand, but has imprecise information about the quantity demand. We model this uncertainty using fuzzy variables. The dynamic pricing problem based on credibility theory is formulated using three fuzzy programming models, viz.: the fuzzy expected revenue maximization model, a-optimistic revenue maximization model, and credibility maximization model. Fuzzy simulations for functions with fuzzy parameters are given and embedded into a genetic algorithm to design a hybrid intelligent algorithm to solve these three models. Finally, a real-world example is presented to highlight the effectiveness of the developed model and algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we consider a discrete-time risk process allowing for delay in claim settlement, which introduces a certain type of dependence in the process. From martingale theory, an expression for the ultimate ruin probability is obtained, and Lundberg-type inequalities are derived. The impact of delay in claim settlement is then investigated. To this end, a convex order comparison of the aggregate claim amounts is performed with the corresponding non-delayed risk model, and numerical simulations are carried out with Belgian market data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is devoted to the study of some stochastic models in inventories. An inventory system is a facility at which items of materials are stocked. In order to promote smooth and efficient running of business, and to provide adequate service to the customers, an inventory materials is essential for any enterprise. When uncertainty is present, inventories are used as a protection against risk of stock out. It is advantageous to procure the item before it is needed at a lower marginal cost. Again, by bulk purchasing, the advantage of price discounts can be availed. All these contribute to the formation of inventory. Maintaining inventories is a major expenditure for any organization. For each inventory, the fundamental question is how much new stock should be ordered and when should the orders are replaced. In the present study, considered several models for single and two commodity stochastic inventory problems. The thesis discusses two models. In the first model, examined the case in which the time elapsed between two consecutive demand points are independent and identically distributed with common distribution function F(.) with mean  (assumed finite) and in which demand magnitude depends only on the time elapsed since the previous demand epoch. The time between disasters has an exponential distribution with parameter . In Model II, the inter arrival time of disasters have general distribution (F.) with mean  ( ) and the quantity destructed depends on the time elapsed between disasters. Demands form compound poison processes with inter arrival times of demands having mean 1/. It deals with linearly correlated bulk demand two Commodity inventory problem, where each arrival demands a random number of items of each commodity C1 and C2, the maximum quantity demanded being a (< S1) and b(

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis develops an approach to the construction of multidimensional stochastic models for intelligent systems exploring an underwater environment. It describes methods for building models by a three- dimensional spatial decomposition of stochastic, multisensor feature vectors. New sensor information is incrementally incorporated into the model by stochastic backprojection. Error and ambiguity are explicitly accounted for by blurring a spatial projection of remote sensor data before incorporation. The stochastic models can be used to derive surface maps or other representations of the environment. The methods are demonstrated on data sets from multibeam bathymetric surveying, towed sidescan bathymetry, towed sidescan acoustic imagery, and high-resolution scanning sonar aboard a remotely operated vehicle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many modern statistical applications involve inference for complex stochastic models, where it is easy to simulate from the models, but impossible to calculate likelihoods. Approximate Bayesian computation (ABC) is a method of inference for such models. It replaces calculation of the likelihood by a step which involves simulating artificial data for different parameter values, and comparing summary statistics of the simulated data with summary statistics of the observed data. Here we show how to construct appropriate summary statistics for ABC in a semi-automatic manner. We aim for summary statistics which will enable inference about certain parameters of interest to be as accurate as possible. Theoretical results show that optimal summary statistics are the posterior means of the parameters. Although these cannot be calculated analytically, we use an extra stage of simulation to estimate how the posterior means vary as a function of the data; and we then use these estimates of our summary statistics within ABC. Empirical results show that our approach is a robust method for choosing summary statistics that can result in substantially more accurate ABC analyses than the ad hoc choices of summary statistics that have been proposed in the literature. We also demonstrate advantages over two alternative methods of simulation-based inference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of rank dependent preference functionals under risk is comprehensively evaluated using Bayesian model averaging. Model comparisons are made at three levels of heterogeneity plus three ways of linking deterministic and stochastic models: the differences in utilities, the differences in certainty equivalents and contextualutility. Overall, the"bestmodel", which is conditional on the form of heterogeneity is a form of Rank Dependent Utility or Prospect Theory that cap tures the majority of behaviour at both the representative agent and individual level. However, the curvature of the probability weighting function for many individuals is S-shaped, or ostensibly concave or convex rather than the inverse S-shape commonly employed. Also contextual utility is broadly supported across all levels of heterogeneity. Finally, the Priority Heuristic model, previously examined within a deterministic setting, is estimated within a stochastic framework, and allowing for endogenous thresholds does improve model performance although it does not compete well with the other specications considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider bipartitions of one-dimensional extended systems whose probability distribution functions describe stationary states of stochastic models. We define estimators of the information shared between the two subsystems. If the correlation length is finite, the estimators stay finite for large system sizes. If the correlation length diverges, so do the estimators. The definition of the estimators is inspired by information theory. We look at several models and compare the behaviors of the estimators in the finite-size scaling limit. Analytical and numerical methods as well as Monte Carlo simulations are used. We show how the finite-size scaling functions change for various phase transitions, including the case where one has conformal invariance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A relação entre preços do mercado spot e do mercado futuro e a evidência de Mercado Invertido (backwardation) na estrutura a termo de commodities têm tido ênfase na literatura de economia e de finanças. O objetivo deste trabalho é apresentar as principais causas responsáveis pelo comportamento de Mercado Invertido e identificar as propriedades que caracterizam o equilíbrio de preços em commodities agrícolas. Seja pela existência de prêmio de risco ou do benefício de conveniência, o entendimento dos efeitos sobre a replicação do preço futuro e sobre a estrutura a termo de preços ainda permanece em aberto. A premissa de perfeita replicação de portfólios e a ausência de fricções de mercado implicam, por outro lado, que o entendimento do comportamento de Mercado Invertido advém da compreensão do processo estocástico do próprio ativo subjacente. O apreçamento neutro ao risco, amparado pelos sinais de reversão de preços, permite a modelagem de preços conforme o proposto em Schwartz e Smith (2000), cuja calibração e os resultados serão apresentados para a soja.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we construct sunspot equilibria that arrise from chaotic deterministic dynamics. These equilibria are robust and therefore observables. We prove that they may be learned by a sim pie rule based on the histograms or past state variables. This work gives the theoretical justification or deterministic models that might compete with stochastic models to explain real data.