932 resultados para STATIONARY PHASES
Resumo:
BACKGROUND Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Several virulence factors have been described, but the type-three secretion system (T3SS) is recognized as having a major effect on virulence by injecting effectors directly into fish cells. In this study we used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF2267) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential and stationary phases of growth. RESULTS Results confirmed the secretion of effectors AopH, AexT, AopP and AopO via T3SS, and for the first time demonstrated the impact of T3SS in secretion of Ati2, AopN and ExsE that are known as effectors in other pathogens. Translocators, needle subunits, Ati1, and AscX were also secreted in supernatants (SNs) dependent on T3SS. AopH, Ati2, AexT, AopB and AopD were in the top seven most abundant excreted proteins. EF-G, EF-Tu, DnaK, HtpG, PNPase, PepN and MdeA were moderately secreted in wt SNs and predicted to be putative T3 effectors by bioinformatics. Pta and ASA_P5G088 were increased in wt SNs and T3-associated in other bacteria. Ten conserved cytoplasmic proteins were more abundant in wt SNs than in the ΔascV mutant, but without any clear association to a secretion system. T1-secreted proteins were predominantly found in wt SNs: OmpAI, OmpK40, DegQ, insulinase ASA_0716, hypothetical ASA_0852 and ASA_3619. Presence of T3SS components in pellets was clearly decreased by ascV deletion, while no impact was observed on T1- and T2SS. Our results demonstrated that the ΔascV mutant strain excreted well-described (VapA, AerA, AerB, GCAT, Pla1, PlaC, TagA, Ahe2, GbpA and enolase) and yet uncharacterized potential toxins, adhesins and enzymes as much as or even more than the wt strain. Other putative important virulence factors were not detected. CONCLUSIONS We demonstrated the whole in vitro secretome and T3SS repertoire of hypervirulent A. salmonicida. Several toxins, adhesins and enzymes that are not part of the T3SS secretome were secreted to a higher extent in the extremely low-virulent ΔascV mutant. All together, our results show the high importance of an intact T3SS to initiate the furunculosis and offer new information about the pathogenesis.
Resumo:
Cell-wall mechanical properties play an integral part in the growth and form of Saccharomyces cerevisiae. In contrast to the tremendous knowledge on the genetics of S. cerevisiae, almost nothing is known about its mechanical properties. We have developed a micromanipulation technique to measure the force required to burst single cells and have recently established a mathematical model to extract the mechanical properties of the cell wall from such data. Here we determine the average surface modulus of the S. cerevisiae cell wall to be 11.1 ± 0.6 N/m and 12.9 ± 0.7 N/m in exponential and stationary phases, respectively, giving corresponding Young's moduli of 112 ± 6 MPa and 107 ± 6 MPa. This result demonstrates that yeast cell populations strengthen as they enter stationary phase by increasing wall thickness and hence the surface modulus, without altering the average elastic properties of the cell-wall material. We also determined the average breaking strain of the cell wall to be 82% ± 3% in exponential phase and 80% ± 3% in stationary phase. This finding provides a failure criterion that can be used to predict when applied stresses (e.g., because of fluid flow) will lead to wall rupture. This work analyzes yeast compression experiments in different growth phases by using engineering methodology.
Resumo:
The effect of temperature from 5 degrees C to 50 degrees C on the retention of dansyl derivatives of amino acids in hydrophobic interaction chromatography (HIC) was investigated by HPLC on three stationary phases. Plots of the logarithmic retention factor against the reciprocal temperature in a wide range were nonlinear, indicative of a large negative heat capacity change associated with retention. By using Kirchoff's relations, the enthalpy, entropy, and heat capacity changes were evaluated from the logarithmic retention factor at various temperatures by fitting the data to a logarithmic equation and a quadratic equation that are based on the invariance and on an inverse square dependence of the heat capacity on temperature, respectively. In the experimental temperature interval, the heat capacity change was found to increase with temperature and could be approximated by the arithmetic average. For HIC retention of a set of dansylamino acids, both enthalpy and entropy changes were positive at low temperatures but negative at high temperatures as described in the literature for other processes based on the hydrophobic effect. The approach presented here shows that chromatographic measurements can be not only a useful adjunct to calorimetry but also an alternative means for the evaluation of thermodynamic parameters.
Resumo:
O uso de pesticidas levou ao aumento da produtividade e qualidade dos produtos agrícolas, porém o seu uso acarreta na intoxicação dos seres vivos pela ingestão gradativa de seus resíduos que contaminam o solo, a água e os alimentos. Dessa forma, há a necessidade do monitoramento constante de suas concentrações nos compartimentos ambientais. Para isto, busca-se o desenvolvimento de métodos de extração e enriquecimento de forma rápida, com baixo custo, gerando um baixo volume de resíduos, contribuindo com a química verde. Dentre estes métodos destacam-se a extração por banho de ultrassom e a extração por ponto nuvem. Após o procedimento de extração, o extrato obtido pode ser analisado por técnicas de Cromatografia a Líquido de Alta Eficiência (HPLC) e a Cromatografia por Injeção Sequencial (SIC), empregando fases estacionárias modernas, tais como as monolíticas e as partículas superficialmente porosas. O emprego de SIC com coluna monolítica (C18, 50 x 4,6 mm) e empacotada com partículas superficialmente porosas (C18, 30 x 4,6 mm, tamanho de partícula 2,7 µm) foi estudado para separação de simazina (SIM) e atrazina (ATR), e seus metabólitos, desetilatrazina (DEA), desisopropilatrazina (DIA) e hidroxiatrazina (HAT). A separação foi obtida por eluição passo-a-passo, com fases móveis compostas de acetonitrila (ACN) e tampão Acetato de Amônio/Ácido acético (NH4Ac/HAc) 2,5 mM pH 4,2. A separação na coluna monolítica foi realizada com duas fases móveis: MP1= 15:85 (v v-1) ACN:NH4Ac/HAc e MP2= 35:65 (v v-1) ACN:NH4Ac/HAc a uma vazão de 35 µL s-1. A separação na coluna com partículas superficialmente porosas foi efetivada com as fases móveis MP1= 13:87 (v v-1) ACN: NH4Ac/HAc e MP2= 35:65 (v v-1) ACN:NH4Ac/HAc à vazão de 8 µL s-1. A extração por banho de ultrassom em solo fortificado com os herbicidas (100 e 1000 µg kg-1) resultou em recuperações entre 42 e 160%. A separação de DEA, DIA, HAT, SIM e ATR empregando HPLC foi obtida por um gradiente linear de 13 a 35% para a coluna monolítica e de 10 a 35% ACN na coluna com partículas superficialmente porosas, sendo a fase aquosa constituída por tampão NH4Ac/HAc 2,5 mM pH 4,2. Em ambas as colunas a vazão foi de 1,5 mL min-1 e o tempo de análise 15 min. A extração por banho de ultrassom das amostras de solo com presença de ATR, fortificadas com concentrações de 250 a 1000 µg kg-1, proporcionou recuperações entre 40 e 86%. A presença de ATR foi confirmada por espectrometria de massas. Foram realizados estudos de fortificação com ATR e SIM em amostras de água empregando a extração por ponto nuvem com o surfactante Triton-X114. A separação empregando HPLC foi obtida por um gradiente linear de 13 a 90% de ACN para a coluna monolítica e de 10 a 90% de ACN para a coluna empacotada, sempre em tampão NH4Ac/HAc 2,5 mM pH 4,2. Em ambas as colunas a vazão foi de 1,5 mL min-1 e o tempo de análise 16 min. Fortificações entre 1 e 50 µg L-1 resultaram em recuperações entre 65 e 132%.
Resumo:
The growth of Pseudomonas aeruginosa 6750 as a biofilm was investigated using a novel system based on that of Gilbert et al (1989). The aim was to test the effect of controlled growth of the organism on antibiotic susceptibility and examine the survival of the organism as a biofilm. During the investigations it became clear that, because of the increasing growth of P.aeruginosa and production of exopolysaccharide, a growth rate controlled monolayer could not be achieved and so the method was not used further. The data, however, showed that there was an increase in the smooth colony type of the organism during growth. Investigations were focused on the survival of P.aeruginosa in batch and chemostat studies. Survival or percentage culturability, as measured by total and colony count ratio, was found to decrease both in extended batch culture and for chemostat cells with decreasing growth rate. Extended batch culture, however, did not exhibit further increases in resistance to ciprofloxacin and polymyxin B. Survival was also measured using other parameters namely the direct viable count, vital staining, effect of temperature downshift and measurement of lag. In batch culture, the most notable change was a decrease in cell size along the growth curve. This was accompanied by an increase in the cellular protein content. Protein per volume was calculated from the data which showed a marked increase in batch culture, which was not demonstrated for chemostat cells with decreasing growth rate. Outer membrane protein profiles were obtained for batch and chemostat cells. An LPS profile of batch culture cells was also demonstrated. In general, there was little difference in the outer membrane protein profiles of cells from early and late stationary phases.The result of the LPS profile showed that there appeared to be an increase in the B-band of the region of the LPS in the older stationary phase cultures.
Resumo:
The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.
Resumo:
Two series of novel modified silicas have been prepared in which individual dendritic branches have been attached to aminopropylsilica using standard peptide coupling methodology. The dendritic branches are composed of enantiomerically pure l-lysine building blocks, and hence, the modified silicas have the potential to act as chiral stationary phases in chromatography. In one series of modified silicas, the surface of the dendritic branch consists of Boc carbamate groups, whereas the other has benzoyl amide surface groups. Different coupling reagents have been investigated in order to maximize the loading onto the solid phase. The new supported dendritic materials have been fully characterized with properties of the bulk material determined by elemental analysis, 13C NMR, and IR spectroscopy, whereas XPS provides important information about the surface of the modified silica exposed to the incident X-rays, the key region in which potential chromatographic performance of these materials will take place. Although the bulk analyses indicate that loading of the dendritic branch onto silica decreases with increasing dendritic generation (and consequently steric bulk), XPS indicates that the optimum surface coverage is actually obtained at the second generation of dendritic growth.
Resumo:
In the last decades, the effects of the air pollution have been increasing, especially in the case of the human health diseases. In order to overcome this problem, scientists have been studying the components of the air. As a part of water-soluble organic compounds, amino acids are present in the atmospheric environment as components of diverse living organisms which can be responsible for spreading diseases through the air. Liquid chromatography is one technique capable of distinguish the different amino acids from each other. In this work, aiming at separating the amino acids found in the aerosols samples collected in Aveiro, the ability of four columns (Mixed-Mode WAX-1, Mixed-Mode HILIC-1, Luna HILIC and Luna C18) to separate four amino acids (aspartic acid, lysine, glycine and tryptophan) and the way the interaction of the stationary phases of the columns with the analytes is influenced by organic solvent concentration and presence/concentration of the buffer, are being assessed. In the Mixed-Mode WAX-1 column, the chromatograms of the distinct amino acids revealed the separation was not efficient, since the retention times were very similar. In the case of lysine, in the elution with 80% (V/V) MeOH, the peaks appeared during the volume void. In the Mixed-Mode HILIC-1 column, the variation of the organic solvent concentration did not affect the elution of the four studied amino acids. Considering the Luna HILIC column, the retention times of the amino acids were too close to each other to ensure a separation among each other. Lastly, the Luna C18 column revealed to be useful to separate amino acids in a gradient mode, being the variation of the mobile phase composition in the organic solvent concentration (ACN). Luna C18 was the column used to separate the amino acids in the real samples and the mobile phase had acidified water and ACN. The gradient consisted in the following program: 0 – 2 min: 5% (V/V) ACN, 2 – 8 min: 5 – 2 % (V/V) ACN, 8 – 16 min: 2% (V/V) ACN, 16 – 20 min: 2 – 20 % (V/V) ACN, 20 – 35 min: 20 – 35 % (V/V) ACN. The aerosols samples were collected by using three passive samplers placed in two different locations in Aveiro and each sampler had two filters - one faced up and the other faced down. After the sampling, the water-soluble organic compounds was extracted by dissolution in ultra-pure water, sonication bath and filtration. The resulting filtered solutions were diluted in acidified water for the chromatographic separation. The results from liquid chromatography revealed the presence of the amino acids, although it was not possible to identify each one of them individually. The chromatograms and the fluorescence spectra showed the existence of some patterns: the samples that correspond to the up filters had more intense peaks and signals, revealing that the up filters collected more organic matter.
Resumo:
Ga(3+) is a semimetal element that competes for the iron-binding sites of transporters and enzymes. We investigated the activity of gallium maltolate (GaM), an organic gallium salt with high solubility, against laboratory and clinical strains of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), and methicillin-resistant S. epidermidis (MRSE) in logarithmic or stationary phase and in biofilms. The MICs of GaM were higher for S. aureus (375 to 2000 microg/ml) than S. epidermidis (94 to 200 microg/ml). Minimal biofilm inhibitory concentrations were 3,000 to >or=6,000 microg/ml (S. aureus) and 94 to 3,000 microg/ml (S. epidermidis). In time-kill studies, GaM exhibited a slow and dose-dependent killing, with maximal action at 24 h against S. aureus of 1.9 log(10) CFU/ml (MSSA) and 3.3 log(10) CFU/ml (MRSA) at 3x MIC and 2.9 log(10) CFU/ml (MSSE) and 4.0 log(10) CFU/ml (MRSE) against S. epidermidis at 10x MIC. In calorimetric studies, growth-related heat production was inhibited by GaM at subinhibitory concentrations; and the minimal heat inhibition concentrations were 188 to 4,500 microg/ml (MSSA), 94 to 1,500 microg/ml (MRSA), and 94 to 375 microg/ml (MSSE and MRSE), which correlated well with the MICs. Thus, calorimetry was a fast, accurate, and simple method useful for investigation of antimicrobial activity at subinhibitory concentrations. In conclusion, GaM exhibited activity against staphylococci in different growth phases, including in stationary phase and biofilms, but high concentrations were required. These data support the potential topical use of GaM, including its use for the treatment of wound infections, MRSA decolonization, and coating of implants.
Resumo:
We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.
Resumo:
The electrochemical behavior of Cu-xAl alloys, with 11 wt%less than or equal to x less than or equal to 15wt%, in 0.5 M H2SO4 was studied by means of open-circuit potential decay measurements, quasi-stationary and fast cyclic voltammetry, and electrochemical impedance spectroscopy. Some of the alloys (x less than or equal to 14%), when quenched formed martensitic structures. Alloys with greater than or equal to 13% showed a little square-shaped phase when quenched from temperatures around 800 degrees C. It was observed that in sulfuric medium, these formations were dealuminized differently than the martensitic phase. The values of the rest potentials are more influenced by the heat treatment rather than by the alloy composition. An anodic Tafel slope of ca. 60 mV/decade was observed for all the alloys, independently of the heat treatment. This is explained in terms of a competition between two processes: copper oxidation and copper(I) deproportionation. In the cyclic voltammetric experiments it was observed an anodic current peak, related with copper oxidation with a possible formation of some interfacial species, and a cathodic current peak during the reverse potential scan, associated with the reduction of soluble species and/or of the film. The AC Impedance data were interpreted in terms of electric equivalent circuits.
Resumo:
Autophagy in the protozoan parasite, Trypanosoma brucei, may be involved in differentiation between different life cycle forms and during growth in culture. We have generated multiple parasite cell lines stably expressing green fluorescent protein- or hemagglutinin-tagged forms of the autophagy marker proteins, TbAtg8.1 and TbAtg8.2, in T. brucei procyclic forms to establish a trypanosome system for quick and reliable determination of autophagy under different culture conditions using flow cytometry. We found that starvation-induced autophagy in T. brucei can be inhibited by addition of a single amino acid, histidine, to the incubation buffer. In addition, we show that autophagy is induced when parasites enter stationary growth phase in culture and that their capacity to undergo starvation-induced autophagy decreases with increasing cell density.
Resumo:
All signals that appear to be periodic have some sort of variability from period to period regardless of how stable they appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and thus has zero bandwidth around the sinusoid's frequency. A zero bandwidth is impossible in nature since all signals have some intrinsic variability over time. Deterministic sinusoids are used to model cycles as a mathematical convenience. Hinich [IEEE J. Oceanic Eng. 25 (2) (2000) 256-261] introduced a parametric statistical model, called the randomly modulated periodicity (RMP) that allows one to capture the intrinsic variability of a cycle. As with a deterministic periodic signal the RMP can have a number of harmonics. The likelihood ratio test for this model when the amplitudes and phases are known is given in [M.J. Hinich, Signal Processing 83 (2003) 1349-13521. A method for detecting a RMP whose amplitudes and phases are unknown random process plus a stationary noise process is addressed in this paper. The only assumption on the additive noise is that it has finite dependence and finite moments. Using simulations based on a simple RMP model we show a case where the new method can detect the signal when the signal is not detectable in a standard waterfall spectrograrn display. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This study compares the impact of obesogenic environment (OE) in six different periods of development on sperm parameters and the testicular structure of adult rats and their correlations with sex steroid and metabolic scenario. Wistar rats were exposed to OE during gestation (O1), during gestation/lactation (O2), from weaning to adulthood (O3), from lactation to adulthood (O4), from gestation to sexual maturity (O5), and after sexual maturation (O6). OE was induced by a 20% fat diet, and control groups were fed a balanced diet (4% fat). Serum leptin levels and adiposity index indicate that all groups were obese, except for O1. Three progressive levels of impaired metabolic status were observed: O1 presented insulin resistance, O2 were insulin resistant and obese, and groups O3, O4, and O5 were insulin resistant, obese, and diabetic. These three levels of metabolic damage were proportional to the increase of leptin and decreased circulating testosterone. The impairment in the daily sperm production (DSP) paralleled these three levels of metabolic and hormonal damage being marginal in O1, increasing in O2, and being higher in groups O3, O4, O5, and O6. None of the OE periods affected the sperm transit time in the epididymis, and the lower sperm reserves were caused mainly by impaired DSP. In conclusion, OE during sexual maturation markedly reduces the DSP at adulthood in the rat. A severe reduction in the DSP also occurs in OE exposure during gestation/lactation but not in gestation, indicating that breast-feeding is a critical period for spermatogenic impairment under obesogenic conditions.
Resumo:
Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER) that contains a 5' spliced leader (SL) cap, a putative 3' polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5'SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.