984 resultados para STARS: ATMOSPHERES


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the (PF2)-P-3 neutron superfluidity in beta-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V-18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the (PF2)-P-3 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antikaon condensation and kaon and antikaon production in protoneutron stars are investigated in a chiral hadronic model (also referred to as the FST model in this paper). The effects of neutrino trapping on protoneutron stars are analyzed systematically. It is shown that neutrino trapping makes the critical density of K- condensation delay to higher density and (K) over bar (0) condensation not occur. The equation of state (EOS) of (proto)neutron star matter with neutrino trapping is stiffer than that without neutrino trapping, As a result, the maximum masses of (proto)neutron stars with neutrino trapping are larger than those without neutrino trapping. If hyperons are taken into account, antikaon does not form a condensate in (Proto)neutron stars. Meanwhile, the corresponding EOS becomes much softer, and the maximum masses of (proto)neutron stars are smaller than those without hyprons. Finally, our results illustrate that the Q values for K+ and K- production in (proto)neutron stars are not sensitive to neutrino trapping and inclusion of hyperons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antikaon condensation and deconfinement phase transition in neutron stars are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase and in the MIT bag model for the deconfined quark matter phase. It is shown that the existence of quark matter phase makes antikaon condensation impossible in neutron stars. The properties of neutron stars are sensitive to the bag constant. For the small values of the bag constant, the pure quark matter core appears and hyperons are strongly suppressed in neutron stars, whereas for the large bag constant, the hadron-quark mixed phase exists in the center of neutron stars. The maximum masses of neutron stars with the quark matter phase are lower than those without the quark matter phase; meanwhile, the maximum masses of neutron stars with the quark matter phase increase with the bag constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter, and beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two- and three-body interaction. The investigation covers a wide baryon density range as needed in the applications to neutron stars. The results for the transport coefficients in beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of nonradial modes in neutron stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variations of emission intensities of SrB4O7:Eu2+ and Sr2B5O9Cl:Eu2+ prepared in different atmospheres are discussed in view of the structure of host compounds. A model of substitution defects is proposed to explain the abnormal reduction of Eu3+ --> Eu2+ in non-reducing atmospheres of N-2, air and O-2. Experiment results show that SrB4O7:Eu2+ phosphor sample prepared in N-2 atmosphere has an emission intensity of 94% as high as that of the sample prepared in H-2 gas. This implies that the reduction of Eu2+ --> Eu2+ in non-reducing atmospheres could be potentially used in preparing phosphors, such as SrB4O7:Eu2+. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of oxygen-hydrogen pretreatments of nanosilver catalysts in cycle mode on the structure and particle size of silver particles, and subsequently the activity of the catalyst toward CO oxidation (or CO selective oxidation in the presence of H-2) are reported in this paper. Ag/SiO2 catalyst with silver particle sizes of ca. 6 similar to 8 nm shows relatively high activity in the present reaction system. The adopting of a cycle of oxidation/reduction pretreatment has a marked influence on the activity of the catalyst. Oxygen pretreatment at 500 degrees C results in the formation of subsurface oxygen and activates the catalyst. As evidenced by in-situ XRD and TEM, the following H-2 treatment at low temperatures (100 similar to 300 degrees C) causes surface faceting and redispersing of the silver particles without destroying the subsurface oxygen species. The subsequent in-situ FTIR and catalytic reaction results show that CO oxidation occurs at -75 degrees C and complete CO conversion can be obtained at 40 degrees C over such a nanosilver catalyst pretreated with oxygen at 500 degrees C followed by H-2 at 100 degrees C. However, prolonged hydrogen treatment at high temperatures (> 300 degrees C) after oxygen pretreatment at 500 degrees C induces the aggregation of silver particles and also depletes so much subsurface oxygen species that the pathway of CO oxidation by the subsurface oxygen species is inhibited. Meanwhile, the ability of the catalyst to adsorb reactants is greatly depressed, resulting in a 20 similar to 30% decrease in the activity toward CO oxidation. However, the activity of the catalyst pretreated with oxygen at 500 degrees C followed by hydrogen treatment at high temperatures (> 300 degrees C) is still higher than that directly pretreated with H,. This kind of catalytic behavior of silver catalyst is associated with physical changes in the silver crystallites because of surface restructuring and crystallite redispersion during the course of oxygen-hydrogen pretreatment steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SyNAPSE program of the Defense Advanced Projects Research Agency (HRL Laboratories LLC, subcontract #801881-BS under DARPA prime contract HR0011-09-C-0001); CELEST, a National Science Foundation Science of Learning Center (SBE-0354378)