999 resultados para ST-HILL FRUITS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural fibers have been highlighted as a renewable material that can replace materials from oil and its derivatives. In this context, Brazil becomes the perfect setting because of the diversity of fibers found in its territory, such as sugarcane, sisal, rice, cotton, coconut, pineapple, among others. The paineiras (Chorisia speciosa St. Hil) are typically Brazilian trees, which produce paina as fruit. These fruits are still little studied as a source of lignocellulose by research groups. This project aimed obtaining and characterization of cellulose nanofibers from the fibers from the paina fibers. Obtaining nanocellulose is practically made through simplified chemical processes. First, was performed out pre-treatments to removal of waxes, lignin and hemicellulose. The first stage of pre-treatment was carried out by alkaline aqueous solution of sodium hydroxide (NaOH) at 5wt%, where the fibers were under constant agitation for 1h at 70°C. Through alkali treatment it was possible to remove most of the lignin, hemicellulose, waxes and extractives. After the alkaline treatment was done bleaching with an aqueous solution of sodium hydroxide (NaOH) to 4wt% and hydrogen peroxide (H2O2) to 24wt% 1:1 during 2h with constant stirring to 50 °C. Through bleaching was possibe to remove residual lignin, and got cellulose with 72% of crystallinity. Nanocellulose of paina fibers was extracted using different conditions of acid hydrolysis with sulfuric acid (H2SO4) to 50wt%. After acid hydrolysis, the suspensions were centrifuged during 30 min and dialyzed in water to remove excess acid until neutral pH (6-7). Then the suspensions were passed by ultrasonification in an ultrasound 20 kHz during 1h in an ice bath. Untreated, alkalinized and bleached fibers as well as cellulose nanoparticles were characterized by the techniques of thermogravimetry ... (Complete abastract click electronic access below)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural fibers have been highlighted as a renewable material that can replace materials from oil and its derivatives. In this context, Brazil becomes the perfect setting because of the diversity of fibers found in its territory, such as sugarcane, sisal, rice, cotton, coconut, pineapple, among others. The paineiras (Chorisia speciosa St. Hil) are typically Brazilian trees, which produce paina as fruit. These fruits are still little studied as a source of lignocellulose by research groups. This project aimed obtaining and characterization of cellulose nanofibers from the fibers from the paina fibers. Obtaining nanocellulose is practically made through simplified chemical processes. First, was performed out pre-treatments to removal of waxes, lignin and hemicellulose. The first stage of pre-treatment was carried out by alkaline aqueous solution of sodium hydroxide (NaOH) at 5wt%, where the fibers were under constant agitation for 1h at 70°C. Through alkali treatment it was possible to remove most of the lignin, hemicellulose, waxes and extractives. After the alkaline treatment was done bleaching with an aqueous solution of sodium hydroxide (NaOH) to 4wt% and hydrogen peroxide (H2O2) to 24wt% 1:1 during 2h with constant stirring to 50 °C. Through bleaching was possibe to remove residual lignin, and got cellulose with 72% of crystallinity. Nanocellulose of paina fibers was extracted using different conditions of acid hydrolysis with sulfuric acid (H2SO4) to 50wt%. After acid hydrolysis, the suspensions were centrifuged during 30 min and dialyzed in water to remove excess acid until neutral pH (6-7). Then the suspensions were passed by ultrasonification in an ultrasound 20 kHz during 1h in an ice bath. Untreated, alkalinized and bleached fibers as well as cellulose nanoparticles were characterized by the techniques of thermogravimetry ... (Complete abastract click electronic access below)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"November 1995."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliographical references (p. viii-ix) and index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

View of eastern facade to lake, with Zelman Cowen building behind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceylon gooseberry is a deep-purple exotic berry that is being produced in Brazil with great market potential. This work aimed to determine major phenolic compounds in this specie by HPLC-PDA-ESI/MS. Samples were collected in two different seasons. Pulp and skin were analyzed separately. Non-acylated rutinoside derivatives of delphinidin (∼60-63%) and cyanidin (∼17-21%) were major anthocyanins tentatively identified. All anthocyanins had higher concentration in skin than in pulp (64-82 and 646-534mg of cyaniding-3-glucoside equivalents/100g skin and pulp, respectively). Moreover, anthocyanin profile changed between sampling dates (p<0.05). Mainly for delphinidin-3-rutinoside which could be a result of season variation. In this specie, non-anthocyanin polyphenols represent less than 35% of total extracted polyphenols. The tentative identification proposed a flavonol and three ellagitannins as major compounds of the non-anthocyanin phenolics fraction. Finally, anthocyanin is the major phenolic class in this fruit and its composition and content are significantly affected by season.