718 resultados para SQUAMATE REPTILES
Resumo:
2
Resumo:
Tabanid females are better known as hematophagous on man and other mammals, and linked to mechanical transmission of parasites. The association between tabanids and reptiles is poorly known, but has been gaining more corroboration through experiments and occasional observation in the tropics. The present study was conducted at a military base (CIGS/BI-2), situated 54 km from Manaus, Amazonas, in a small stream in a clearing (02°45'33"S; 59°51'03"W). Observations were made monthly, from April 1997 to March 1998, during two consecutive days. At the same time, other vertebrate animals were offered, including humans. However in this paper only data obtained on a common caiman, Caiman crocodilus (Linn.), and an anaconda, Eunectes murinus (Linn.), in diurnal observations from 05:30 a.m. to 18:30 p.m., will be discussed. A total of 254 tabanid specimens were collected, 40 from the anaconda and 214 from the caiman. Four tabanid species were recorded on these two reptiles: Stenotabanus cretatus Fairchild, S. bequaerti Rafael et al., Phaeotabanus nigriflavus (Kröber) and Tabanus occidentalis Linn. Diurnal activities showed species-specific patterns. The first three species occurred only in the dry season. T. occidentalis occurred during the whole observation period, and with increased frequency at the end of the dry season. We observed preferences for body area and related behavior of the host. Observations on the attack of tabanids on one dead caiman are also presented.
Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.
Resumo:
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.
Resumo:
Reptiles, supposedly, do not produce pheomelanin pigments. Because this claim is based on rather weak evidence, we measured the shell pheomelanin content in the Hermann's Tortoise (Eurotestudo boettgeri). In contrast to expectation, we detected a substantial amount of this pigment. Given the recent interest in the adaptive function of melanin-based color traits, our study opens new avenues of research in reptiles.
Resumo:
Capsule We present a review of the propensity to eat reptiles in the Barn Owl Tyto alba in Europe. Based on the analysis of 591 published studies reporting 3.07 million prey items identified in pellets, only 2402 reptiles (0.08%) were found. Reptiles were most often captured in southern parts of the European continent and on islands. A large proportion of the 1304 identified reptiles to the species level were nocturnal Gekkonidae (77.1%).
Resumo:
Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.
Resumo:
Control of the heart rate and cardiorespiratory interactions (CRI) is predominantly parasympathetic in all jawed vertebrates, with the sympathetic nervous system having some influence in tetrapods. Respiratory sinus arrhythmia (RSA) has been described as a solely mammalian phenomenon but respiration-related beat-to-beat control of the heart has been described in fish and reptiles. Though they are both important, the relative roles of feed-forward central control and peripheral reflexes in generating CRI vary between groups of fishes and probably between other vertebrates. CRI may relate to two locations for the vagal preganglionic neurons (VPN) and in particular cardiac VPN in the brainstem. This has been described in representatives from all vertebrate groups, though the proportion in each location is variable. Air-breathing fishes, amphibians and reptiles breathe discontinuously and the onset of a bout of breathing is characteristically accompanied by an immediate increase in heart rate plus, in the latter two groups, a left-right shunting of blood through the pulmonary circuit. Both the increase in heart rate and opening of a sphincter on the pulmonary artery are due to withdrawal of vagal tone. An increase in heart rate following a meal in snakes is related to withdrawal of vagal tone plus a non-adrenergic-non-cholinergic effect that may be due to humoral factors released by the gut. Histamine is one candidate for this role.
Resumo:
Resumen tomado de la publicación
Resumo:
Material educativo realizado por los profesionales del Departament d'Educació del Zoològic de Barcelona destinado al último ciclo de educación infantil y educación primaria para el estudio de los amfibios y reptiles. El tema se trabaja a partir de una serie de actividades e imágenes que ilustran la temática.
Resumo:
Diseñado para atraer a los lectores principiantes en temas de la vida real, presenta a los reptiles abarcando su hábitat, la alimentación,colmillos y venenos,la descendencia y la forma de vida. El texto tiene dos niveles de dificultad y dos tamaños de letra. Incluye un glosario y direcciones de organizaciones para obtener más información.
Resumo:
Tiene como objeto explorar el mundo de los reptiles y ofrecer respuestas a muchos de los qué, por qué y cómo que los niños pequeños preguntan sobre el mundo que les rodea. Para ayudar a los niños a diferenciar entre tortuga marina y tortuga terrestre, aligátor y cocodrilo. por que la serpiente de cascabel tiene un sonajero. Cada dos páginas hay tres secciones organizadas por temas:un Ahora sé, es una revisión de los principales aspectos que refuerza lo aprendido. Eso es asombroso, ofrece características destacadas de la costa.Mira y encuentra sirve para alentar a los niños a identificar y asociar nombres con imágenes.
Resumo:
Este manual proporciona información sobre las costumbres de las diferentes especies de anfibios y reptiles de la Comunidad de Madrid. La primera parte describe las especies e incluye datos sobre su biología, distribución y situación de sus poblaciones y una guía rápida de identificación. En la segunda parte, se ofrece una descripción de las principales áreas de observación y un calendario del herpetólogo. El último cápitulo está dedicado al estado de conservación de las especies.
Resumo:
Adaptive radiations often follow the evolution of key traits, such as the origin of the amniotic egg and the subsequent radiation of terrestrial vertebrates. The mechanism by which a species determines the sex of its offspring has been linked to critical ecological and life-history traits(1-3) but not to major adaptive radiations, in part because sex-determining mechanisms do not fossilize. Here we establish a previously unknown coevolutionary relationship in 94 amniote species between sex-determining mechanism and whether a species bears live young or lays eggs. We use that relationship to predict the sex-determining mechanism in three independent lineages of extinct Mesozoic marine reptiles (mosasaurs, sauropterygians and ichthyosaurs), each of which is known from fossils to have evolved live birth(4-7). Our results indicate that each lineage evolved genotypic sex determination before acquiring live birth. This enabled their pelagic radiations, where the relatively stable temperatures of the open ocean constrain temperature-dependent sex determination in amniote species. Freed from the need to move and nest on land(4,5,8), extreme physical adaptations to a pelagic lifestyle evolved in each group, such as the fluked tails, dorsal fins and wing-shaped limbs of ichthyosaurs. With the inclusion of ichthyosaurs, mosasaurs and sauropterygians, genotypic sex determination is present in all known fully pelagic amniote groups (sea snakes, sirenians and cetaceans), suggesting that this mode of sex determination and the subsequent evolution of live birth are key traits required for marine adaptive radiations in amniote lineages.