946 resultados para SPORT SCIENCES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blood pressure (BP) assessment during resistance exercise can be useful to avoid high BP, reducing cardiovascular risk, especially in hypertensive individuals. However, non-invasive accurate technique for this purpose is not available. The aim of this study was to compare finger photoplethysmographic (FPP) and intra-arterial BP values and responses during resistance exercise. Eight non-medicated hypertensive subjects (5 males, 30-60 years) were evaluated during pre-exercise resting period and during three sets of the knee extension exercise performed at 80% of 1RM until fatigue. BP was measured simultaneously by FPP and intra-arterial methods. Data are mean +/- SD. Systolic BP was significantly higher with FPP than with intra-arterial: at pre-exercise (157 +/- 13 vs. 152 +/- 10 mmHg; p < 0.01) and the mean (202 +/- 29 vs. 198 +/- 26 mmHg; p < 0.01), and the maximal (240 +/- 26 vs. 234 +/- 16 mmHg; p < 0.05) values achieved during exercise. The increase in systolic BP during resistance exercise was similar between FPP and intra-arterial (+ 73 +/- 29 vs. + 71 +/- 18 mmHg; p = 0.59). Diastolic BP values and increases were lower with FPP. In conclusion, FPP provides similar values of BP increment during resistance exercise than intra-arterial method. However, it overestimates by 2.6 +/- 6.1% the maximal systolic BP achieved during this mode of exercise and underestimates by 8.8 +/- 5.8% the maximal diastolic BP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ARTIOLI, G. G., B. GUALANO, A. SMITH, J. STOUT, and A. H. LANCHA, JR. Role of beta-Alanine Supplementation on Muscle Carnosine and Exercise Performance. Med. Sci. Sports Exerc., Vol. 42, No. 6, pp. 1162-1173, 2010. In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids L-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or (V) over dotO(2max), some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to test the hypothesis that in obese children: 1) Ventilatory efficiency (VentE) is decreased during graded exercise; and 2) Weight loss through diet alone (D) improves VentE, and 3) diet associated with exercise training (DET) leads to greater improvement in VentE than by D. Thirty-eight obese children (10 +/- 0.2 years; BMI > 95(th) percentile) were randomly divided into two Study groups: D (n=17; BMI = 30 +/- 1 kg/m(2)) and DET (n = 21; 28 +/- 1 kg/m(2)). Ten lean children were included in a control group (10 +/- 0.3 years; 17 +/- 0.5 kg/m(2)). All children performed maximal treadmill testing with respiratory gas analysis (breath-by-breath) to determine the ventilatory anaerobic threshold (VAT) and peak oxygen consumption (VO(2) peak). VentE was determined by the VE/VCO(2) method at VAT. Obese children showed lower VO(2) peak and lower VentE than controls (p < 0.05). After interventions, all obese children reduced body weight (p < 0.05). D group did not improve in terms of VO(2) peak or VentE (p > 0.05). In contrast, the DET group showed increased VO(2) peak (p = 0.01) and improved VentE(Delta VE/VCO(2) = -6.1 +/- 0.9; p = 0.01). VentE is decreased in obese children, where weight loss by means of DET, but not D alone, improves VentE and cardiorespiratory fitness during graded exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brennecke, A, Guimaraees, TM, Leone, R, Cadarci, M, Mochizuki, L, Simao, R, Amadio, AC, and Serrao, J. Neuromuscular activity during bench press exercise performed with and without the preexhaustion method. J Strength Cond Res 23(7): 1933-1940, 2009-The purpose of the present study was to investigate the effects of exercise order on the tonic and phasic characteristics of upper-body muscle activity during bench press exercise in trained subjects. The preexhaustion method involves working a muscle or a muscle group combining a single-joint exercise immediately followed by a multi-joint exercise (e. g., flying exercise followed by bench press exercise). Twelve subjects performed 1 set of bench press exercises with and without the preexhaustion method following 2 protocols (P1-flying before bench press; P2-bench press). Both exercises were performed at a load of 10 repetition maximum (10RM). Electromyography (EMG) sampled at 1 kHz was recorded from the pectoralis major (PM), anterior deltoid (DA), and triceps brachii (TB). Kinematic data (60 Hz) were synchronized to define upward and downward phases of exercise. No significant (p > 0.05) changes were seen in tonic control of PM and DA muscles between P1 and P2. However, TB tonic aspect of neurophysiologic behavior of motor units was significantly higher (p < 0.05) during P1. Moreover, phasic control of PM, DA, and TB muscles were not affected (p > 0.05). The kinematic pattern of movement changed as a result of muscular weakness in P1. Angular velocity of the right shoulder performed during the upward phase of the bench press exercise was significantly slower (p < 0.05) during P1. Our results suggest that the strategies set by the central nervous system to provide the performance required by the exercise are held constant throughout the exercise, but the tonic aspects of the central drive are increased so as to adapt to the progressive occurrence of the neuromuscular fatigue. Changes in tonic control as a result of the muscular weakness and fatigue can cause changes in movement techniques. These changes may be related to limited ability to control mechanical loads and mechanical energy transmission to joints and passive structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the effect of joint immobilization on the postural sway during quiet standing. We hypothesized that the center of pressure (COP), rambling, and trembling trajectories would be affected by joint immobilization. Ten young adults stood on a force plate during 60 s without and with immobilized joints (only knees constrained, CK; knees and hips, CH; and knees, hips, and trunk, CT). with their eyes open (OE) or closed (CE). The root mean square deviation (RMS, the standard deviation from the mean) and mean speed of COP, rambling, and trembling trajectories in the anterior-posterior and medial-lateral directions were analyzed. Similar effects of vision were observed for both directions: larger amplitudes for all variables were observed in the CE condition. In the anterior-posterior direction, postural sway increased only when the knees, hips, and trunk were immobilized. For the medial-lateral direction, the RMS and the mean speed of the COP, rambling, and trembling displacements decreased after immobilization of knees and hips and knees, hips, and trunk. These findings indicate that the single inverted pendulum model is unable to completely explain the processes involved in the control of the quiet upright stance in the anterior-posterior and medial-lateral directions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prolonged standing has been associated with the onset of low back pain symptoms in working populations. So far, it is unknown how individuals with chronic low back pain (CLBP) behave during prolonged unconstrained standing (PS). The aim of the present study was to analyze the control of posture by subjects with CLBP during PS in comparison to matched healthy adults. The center of pressure (COP) position of 12 CLBP subjects and 12 matched healthy controls was recorded in prolonged standing (30 min) and quiet stance tasks (60 s) on a force plate. The number and amplitude of COP patterns, the root mean square (RMS), speed, and frequency of COP sway were analyzed. Statistical analyses showed that CLBP subjects produced less Postural changes in the antero-posterior direction with decreased postural sway during the prolonged standing task in comparison to the healthy group. Only CLBP subjects were influenced by the prolonged standing task, as demonstrated by their increased COP RMS, COP speed and COP frequency in the quiet standing trial after the prolonged standing task in comparison to the pre-PS trial. The present study provides additional evidence that individuals with CLBP might have altered sensory-motor function. Their inability to generate responses similar to those of healthy subjects during prolonged standing may contribute to CLBP persistence or an increase risk of recurrent back pain episodes. Moreover, quantification of postural changes during prolonged standing could be useful to identify CLBP subjects prone to postural control deficits. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of exercise training (ET) on cardiac renin-angiotensin system (RAS) was investigated in 3-5 month-old mice lacking alpha(2A-) and alpha(2C-)adrenoceptors (alpha(2A)/alpha(2C)ARKO) that present heart failure (HF) and wild type control (WT). ET consisted of 8-week running sessions of 60 min, 5 days/week. In addition, exercise tolerance, cardiac structural and function analysis were made. At 3 months, fractional shortening and exercise tolerance were similar between groups. At 5 months, alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction and fibrosis associated with increased cardiac angiotensin (Ang) II levels (2.9-fold) and increased local angiotensin-converting enzyme activity (ACE 18%). ET decreased alpha(2A)/alpha(2C)ARKO cardiac Ang II levels and ACE activity to age-matched untrained WT mice levels while increased ACE2 expression and prevented exercise intolerance and ventricular dysfunction with little impact on cardiac remodeling. Altogether, these data provide evidence that reduced cardiac RAS explains, at least in part, the beneficial effects of ET on cardiac function in a genetic model of HF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concurrent training is recommended for health improvement, but its acute effects on cardiovascular function are not well established. This study analyzed hemodynamics and autonomic modulation after a single session of aerobic (A), resistance (R), and concurrent (A + R) exercises. Twenty healthy subjects randomly underwent four sessions: control (C:30 min of rest), aerobic (A:30 min, cycle ergometer, 75% of VO(2) peak), resistance (R:6 exercises, 3 sets, 20 repetitions, 50% of 1 RM), and concurrent (AR: A + R). Before and after the interventions, blood pressure (BP), heart rate (HR), cardiac output (CO), and HR variability were measured. Systolic BP decreased after all the exercises, and the greatest decreases were observed after the A and AR sessions (-13 +/- 1 and -11 +/- 1 mmHg, respectively, P < 0.05). Diastolic BP decreased similarly after all the exercises, and this decrease lasted longer after the A session. CO also decreased similarly after the exercises, while systemic vascular resistance increased after the R and AR sessions in the recovery period (+4.0 +/- 1.7 and +6.3 +/- 1.9 U, respectively, P < 0.05). Stroke volume decreased, while HR increased after the exercises, and the greatest responses were observed after the AR session (SV, A = -14.6 +/- 3.6, R = -22.4 +/- 3.5 and AR = -23.4 +/- 2.4 ml; HR, A = +13 +/- 2, R = +15 +/- 2 vs. AR = +20 +/- 2 bpm, P < 0.05). Cardiac sympathovagal balance increased after the exercises, and the greatest increase was observed after the AR session (A = +0.7 +/- 0.8, R = +1.0 +/- 0.8 vs. AR = +1.2 +/- 0.8, P < 0.05). In conclusion, the association of aerobic and resistance exercises in the same training session did not potentiate postexercise hypotension, and increased cardiac sympathetic activation during the recovery period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Queiroz, ACC, Gagliardi, JFL, Forjaz, CLM, and Rezk, CC. Clinic and ambulatory blood pressure responses after resistance exercise. J Strength Cond Res 23(2): 571-578, 2009-This study investigated clinic and ambulatory blood pressure (BP) responses after a single bout of low-intensity resistance exercise in normotensive subjects. Fifteen healthy subjects underwent 2 experimental sessions: control-40 minutes of seated rest, and exercise-6 resistance exercises, with 3 sets of as many repetitions as possible until moderate fatigue, with an intensity of 50% of 1-repetition maximum (1RM). Before and for 60 minutes after interventions, clinic BP was measured by auscultatory and oscillometric methods. Postintervention ambulatory BP levels were also measured for 24 hours. In comparison with preintervention values, clinic systolic BP, as measured by the auscultatory method, did not change in the control group, but it decreased after exercise (-3.7 +/- 1.6 mm Hg, p < 0.05). Diastolic and mean BP levels increased after intervention in the control group (+3.4 +/- 1.0 and +3.0 +/- 0.8 mm Hg, respectively, p, 0.05) and decreased in the exercise group (-3.6 +/- 1.7 and -3.4 +/- 1.4 mm Hg, respectively, p < 0.05). Systolic and mean oscillometric BP levels did not change after interventions either in the control or exercise sessions, whereas diastolic BP increased after intervention in the control group (+5.0 +/- 1.7 mm Hg, p < 0.05) but not change after exercise. Ambulatory BP behaviors after interventions were similar in the control and exercise sessions. Significant and positive correlations were observed between preexercise values and postexercise clinic and ambulatory BP decreases. In conclusion, in the whole sample, a single bout of low-intensity resistance exercise decreased postexercise BP under clinic, but not ambulatory, conditions. However, considering individual responses, postexercise clinic and ambulatory hypotensive effects were greater in subjects with higher preexercise BP levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Myocardial infarction (MI) has been associated with increases in reactive oxygen species (ROS). Exercise training (ET) has been shown to exert positive modulations on vascular function and the purpose of the present study was to investigate the effect of moderate ET on the aortic superoxide production index, NAD(P)H oxidase activity, superoxide dismutase activity and vasomotor response in MI rats. Aerobic ET was performed during 11 weeks. Myocardial infarction significantly diminished maximal exercise capacity, and increased vasoconstrictory response to norepinephrine, which was related to the increased activity of NAD(P)H oxidase and basal superoxide production. On the other hand, ET normalized the superoxide production mostly due to decreased NAD(P)H oxidase activity, although a minor SOD effect may also be present. These adaptations were paralleled by normalization in the vasoconstrictory response to norepinephrine. Thus, diminished ROS production seems to be an important mechanism by which ET mediates its beneficial vascular effects in the MI condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study investigated the effects of 8 week of resistance training (RT) on hemodynamic and ventricular function on cardiac myosin ATPase activity, and on contractility of papillary muscles of rats. Groups: control (CO), electrically stimulated (ES), trained at 60% (TR 60%) and 75% of one repetition maximum (1RM) (TR 75%). Exercise protocol: 5 sets of 12 repetitions at 60 and 75% of 1RM, 5 times per week. The CO and ES groups had similar values for parameters analyzed (P > 0.05). Blood pressure (BP), heart rate (13%), left ventricle systolic pressure (LVSP 13%) decreased and cardiac myosin ATPase activity increased in the TR 75% group (90%, P < 0.05). The contractile performance of papillary muscles increased in trained rats (P < 0.05). Eight weeks of RT was associated with lowering of resting BP, heart rate and LVSP, improvements in contractility of the papillary muscle and an increase of cardiac myosin ATPase activity in rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we examined Spatial-temporal gait stride parameters, lower extremity joint angles, ground reaction forces (GRF) components, and electromyographic activation patterns of 10 healthy elderly individuals (70 +/- 6 years) walking in water and on land and compared them to a reference group of 10 younger adults (29 +/- 16 years). They all walked at self-selected comfortable speeds both on land and while immersed in water at the Xiphoid process level. Concerning the elderly individuals, the main significant differences observed were that they presented shorter stride length, slower speed, lower GRF values, higher horizontal impulses, smaller knee range of motion, lower ankle dorsiflexion, and more knee flexion at the stride`s initial contact in water than on land. Concerning the comparison between elderly individuals and adults, elderly individuals walked significantly slower on land than adults but both groups presented the same speed walking in water. In water, elderly individuals presented significantly shorter stride length, lower stride duration, and higher stance period duration than younger adults. That is, elderly individuals` adaptations to walking in water differ from those in the younger age group. This fact should be considered when prescribing rehabilitation or fitness programs for these populations. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67-73 years) and 17 young adults (age 26-36 years) ran at 3.1ms-1 on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23m; P=0.01), an increase in stride frequency (1.58 vs. 1.37Hz; P=0.002), less knee flexion/extension range of motion (26 vs. 33; P=0.002), less tibial internal/external rotation range of motion (9 vs. 12; P0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (-5.8 vs. -1.0; P=0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.