989 resultados para SPONTANEOUS HYPERTENSIVE RATS
Resumo:
The pathogenesis of fibrosis and the functional features of pressure overload myocardial hypertrophy are still controversial. The objectives of the present study were to evaluate the function and morphology of the hypertrophied myocardium in renovascular hypertensive (RHT) rats. Male Wistar rats were sacrificed at week 4 (RHT4) and 8 (RHT8) after unilateral renal ischemia (Goldblatt II hypertension model). Normotensive rats were used as controls. Myocardial function was analyzed in isolated papillary muscle preparations, morphological features were defined by light microscopy, and myocardial hydroxyproline concentration (HOP) was determined by spectrophotometry. Renal artery clipping resulted in elevated systolic arterial pressure (RHT4: 178 ± 19 mmHg and RHT8: 194 ± 24 mmHg, P<0.05 vs control: 123 ± 7 mmHg). Myocardial hypertrophy was observed in both renovascular hypertensive groups. The myocardial HOP concentration was increased in the RHT8 group (control: 2.93 ± 0.38 µg/mg; RHT4: 3.02 ± 0.40 µg/mg; RHT8: 3.44 ± 0.45 µg/mg of dry tissue, P<0.05 vs control and RHT4 groups). The morphological study demonstrated myocyte necrosis, vascular damage and cellular inflammatory response throughout the experimental period. The increased cellularity was more intense in the adventitia of the arterioles. As a consequence of myocyte necrosis, there was an early, local, conjunctive stroma collapse with disarray and thickening of the argyrophilic interstitial fibers, followed by scarring. The functional data showed an increased passive myocardial stiffness in the RHT4 group. We conclude that renovascular hypertension induces myocyte and arteriole necrosis. Reparative fibrosis occurred as a consequence of the inflammatory response to necrosis. The mechanical behavior of the isolated papillary muscle was normal, except for an early increased myocardial passive stiffness
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity
Resumo:
Cardiopulmonary reflexes are activated via changes in cardiac filling pressure (volume-sensitive reflex) and chemical stimulation (chemosensitive reflex). The sensitivity of the cardiopulmonary reflexes to these stimuli is impaired in the spontaneously hypertensive rat (SHR) and other models of hypertension and is thought to be associated with cardiac hypertrophy. The present study investigated whether the sensitivity of the cardiopulmonary reflexes in SHR is restored when cardiac hypertrophy and hypertension are reduced by enalapril treatment. Untreated SHR and WKY rats were fed a normal diet. Another groups of rats were treated with enalapril (10 mg kg-1 day-1, mixed in the diet; SHRE or WKYE) for one month. After treatment, the volume-sensitive reflex was evaluated in each group by determining the decrease in magnitude of the efferent renal sympathetic nerve activity (RSNA) produced by acute isotonic saline volume expansion. Chemoreflex sensitivity was evaluated by examining the bradycardia response elicited by phenyldiguanide administration. Cardiac hypertrophy was determined from the left ventricular/body weight (LV/BW) ratio. Volume expansion produced an attenuated renal sympathoinhibitory response in SHR as compared to WKY rats. As compared to the levels observed in normotensive WKY rats, however, enalapril treatment restored the volume expansion-induced decrease in RSNA in SHRE. SHR with established hypertension had a higher LV/BW ratio (45%) as compared to normotensive WKY rats. With enalapril treatment, the LV/BW ratio was reduced to 19% in SHRE. Finally, the reflex-induced bradycardia response produced by phenyldiguanide was significantly attenuated in SHR compared to WKY rats. Unlike the effects on the volume reflex, the sensitivity of the cardiac chemosensitive reflex to phenyldiguanide was not restored by enalapril treatment in SHRE. Taken together, these results indicate that the impairment of the volume-sensitive, but not the chemosensitive, reflex can be restored by treatment of SHR with enalapril. It is possible that by augmenting the gain of the volume-sensitive reflex control of RSNA, enalapril contributed to the reversal of cardiac hypertrophy and normalization of arterial blood pressure in SHR.
Resumo:
Hypertension is one of the major precursors of atherosclerotic vascular disease, and vascular smooth muscle abnormal cell replication is a key feature of plaque formation. The present study was conducted to examine the relationship between hypertension and smooth muscle cell proliferation after balloon injury and to correlate neointima formation with resting membrane potential of uninjured smooth muscle cells, since it has been suggested that altered vascular function in hypertension may be related to the resetting of the resting membrane potential in spontaneously hypertensive rats (SHR). Neointima formation was induced by balloon injury to the carotid arteries of SHR and renovascular hypertensive rats (1K-1C), as well as in their normotensive controls, i.e., Wistar Kyoto (WKY) and normal Wistar (NWR) rats. After 14 days the animals were killed and the carotid arteries were submitted to histomorphometric and immunohistochemical analyses. Resting membrane potential measurements showed that uninjured carotid arteries from SHR smooth muscle cells were significantly depolarized (-46.5 ± 1.9 mV) compared to NWR (-69 ± 1.4 mV), NWR 1K-1C (-60.8 ± 1.6 mV), WKY (-67.1 ± 3.2 mV) and WKY 1K-1C (-56.9 ± 1.2 mV). The SHR arteries responded to balloon injury with an enhanced neointima formation (neo/media = 3.97 ± 0.86) when compared to arteries of all the other groups (NWR 0.93 ± 0.65, NWR 1K-1C 1.24 ± 0.45, WKY 1.22 ± 0.32, WKY 1K-1C 1.15 ± 0.74). Our results indicate that the increased fibroproliferative response observed in SHR is not related to the hypertensive state but could be associated with the resetting of the carotid smooth muscle cell resting membrane potential to a more depolarized state.
Resumo:
Abnormalities in glucose metabolism and insulin action are frequently detected in patients with essential hypertension. Spontaneously hypertensive rats (SHR) have been used as an experimental model to understand this pathological condition. The objective of the present study was to assess glucose metabolism and insulin action in SHR and Wistar rats under fed and fasting conditions. Peripheral glucose utilization was estimated by kinetic studies with [6-³H]-glucose and gluconeogenetic activity was measured during continuous [14C]-bicarbonate infusion. Plasma glucose levels were higher in the SHR group. Plasma insulin levels in the fed state were higher in the SHR group (99.8 ± 6.5 µM) than in the control group (70.4 ± 3.6 µM). Muscle glycogen content was reduced in SHR compared to control under the various experimental conditions. Peripheral glucose utilization was slightly lower in the SHR group in the fed state (8.72 ± 0.55 vs 9.52 ± 0.80 mg kg-1 min-1 in controls). Serum free fatty acid levels, hepatic glycogen levels, hepatic phosphoenolpyruvate carboxykinase activity and gluconeogenetic activity were similar in the two groups. The presence of hyperglycemia and hyperinsulinemia and the slightly reduced peripheral glucose utilization suggest the presence of resistance to the action of insulin in peripheral tissues of SHR. Hepatic gluconeogenesis does not seem to contribute to the metabolic alterations detected in these animals.
Resumo:
The two-kidney, one-clip renovascular (2K1C) hypertension model is characterized by a reduction in renal flow on the clipped artery that activates the renin-angiotensin system. Endothelium dysfunction, including diminished nitric oxide production, is also believed to play a role in the pathophysiology of this model. Some studies have shown an effect of L-arginine (L-Arg, a nitric oxide precursor) on hypertension. In the present study we determined the ability of L-Arg (7 days of treatment) to reduce blood pressure and alter renal excretions of water, Na+ and K+ in a model of 2K1C-induced hypertension. Under ether anesthesia, male Wistar rats (150-170 g) had a silver clip (0.20 mm) placed around the left renal artery to produce the 2K1C renovascular hypertension model. In the experimental group, the drinking water was replaced with an L-Arg solution (10 mg/ml; average intake of 300 mg/day) from the 7th to the 14th day after surgery. Sham-operated rats were used as controls. At the end of the treatment period, mean blood pressure was measured in conscious animals. The animals were then killed and the kidneys were removed and weighed. There was a significant reduction of mean blood pressure in the L-Arg-treated group when compared to control (129 ± 7 vs 168 ± 6 mmHg, N = 8-10 per group; P<0.05). Concomitantly, a significant enhancement of water and Na+ excretion was observed in the 2K1C L-Arg-treated group when compared to control (water: 13.0 ± 0.7 vs 9.2 ± 0.5 ml/day, P<0.01; Na+: 1.1 ± 0.05 vs 0.8 ± 0.05 mEq/day, respectively, P<0.01). These results show that orally administered L-Arg acts on the kidney, possibly inducing changes in renal hemodynamics or tubular transport due to an increase in nitric oxide formation.
Resumo:
We investigate whether combined treatment with losartan, an angiotensin II receptor blocker, and exercise training (ET) in spontaneously hypertensive rats (SHR) would have an additive effect in reducing hypertension and improving baroreflex sensitivity when compared with losartan alone. Male SHR (8 weeks old) were assigned to 3 groups: sedentary placebo (SP, N = 16), sedentary under losartan treatment (SL, N = 11; 10 mg kg-1 day-1, by gavage), and ET under losartan treatment (TL, N = 10). ET was performed on a treadmill 5 days/week for 60 min at 50% of peak VO2, for 18 weeks. Blood pressure (BP) was measured with a catheter inserted into the carotid artery, and cardiac output with a microprobe placed around the ascending aorta. The baroreflex control of heart rate was assessed by administering increasing doses of phenylephrine and sodium nitroprusside (iv). Losartan significantly reduced mean BP (178 ± 16 vs 132 ± 12 mmHg) and left ventricular hypertrophy (2.9 ± 0.4 vs 2.5 ± 0.2 mg/g), and significantly increased baroreflex bradycardia and tachycardia sensitivity (1.0 ± 0.3 vs 1.7 ± 0.5 and 2.0 ± 0.7 vs 3.2 ± 1.7 bpm/mmHg, respectively) in SL compared with SP. However, losartan combined with ET had no additional effect on BP, baroreflex sensitivity or left ventricular hypertrophy when compared with losartan alone. In conclusion, losartan attenuates hypertension and improves baroreflex sensitivity in SHR. However, ET has no synergistic effect on BP in established hypertension when combined with losartan, at least at the dosage used in this investigation.
Resumo:
Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean ± SD): 58.9 ± 8.2; FR: 50.8 ± 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 ± 379; FR: 3555 ± 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 ± 16; FR: 149 ± 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 ± 9; FR: 150 ± 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 ± 1.6; FR: 9.2 ± 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 ± 16.5; FR: 68.2 ± 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.
Resumo:
We investigated the acute effects of centrally acting antihypertensive drugs on the microcirculation of pentobarbital-anesthetized spontaneously hypertensive rats (SHR). The effects of the sympatho-inhibitory agents clonidine and rilmenidine, known to activate both alpha2-adrenoceptors and nonadrenergic I1-imidazoline binding sites (I1BS) in the central nervous system, were compared to those of dicyclopropylmethyl-(4,5-dimethyl-4,5-dihydro-3H -pyrrol-2-yl)-amine hydrochloride (LNP 509), which selectively binds to the I1BS. Terminal mesenteric arterioles were observed by intravital microscopy. Activation of the central sympathetic system with L-glutamate (125 µg, ic) induced marked vasoconstriction of the mesenteric microcirculation (27 ± 3%; N = 6, P < 0.05). In contrast, the marked hypotensive and bradycardic effects elicited by intracisternal injection of clonidine (1 µg), rilmenidine (7 µg) and LNP 509 (60 µg) were accompanied by significant increases in arteriolar diameter (12 ± 1, 25 ± 10 and 21 ± 4%, respectively; N = 6, P < 0.05). The vasodilating effects of rilmenidine and LNP 509 were two-fold higher than those of clonidine, although they induced an identical hypotensive effect. Central sympathetic inhibition elicited by baclofen (1 µg, ic), a GABA B receptor agonist, also resulted in vasodilation of the SHR microvessels. The acute administration of clonidine, rilmenidine and LNP 509 also induced a significant decrease of cardiac output, whereas a decrease in systemic vascular resistance was observed only after rilmenidine and LNP 509. We conclude that the normalization of blood pressure in SHR induced by centrally acting antihypertensive agents is paralleled by important vasodilation of the mesenteric microcirculation. This effect is more pronounced with substances acting preferentially (rilmenidine) or exclusively (LNP 509) upon I1BS than with those presenting important alpha2-adrenergic activity (clonidine).
Resumo:
The aim of the present study was to evaluate the effect of amiodarone on mean arterial pressure (MAP), heart rate (HR), baroreflex, Bezold-Jarisch, and peripheral chemoreflex in normotensive and chronic one-kidney, one-clip (1K1C) hypertensive rats (N = 9 to 11 rats in each group). Amiodarone (50 mg/kg, iv) elicited hypotension and bradycardia in normotensive (-10 ± 1 mmHg, -57 ± 6 bpm) and hypertensive rats (-37 ± 7 mmHg, -39 ± 19 bpm). The baroreflex index (deltaHR/deltaMAP) was significantly attenuated by amiodarone in both normotensive (-0.61 ± 0.12 vs -1.47 ± 0.14 bpm/mmHg for reflex bradycardia and -1.15 ± 0.19 vs -2.63 ± 0.26 bpm/mmHg for reflex tachycardia) and hypertensive rats (-0.26 ± 0.05 vs -0.72 ± 0.16 bpm/mmHg for reflex bradycardia and -0.92 ± 0.19 vs -1.51 ± 0.19 bpm/mmHg for reflex tachycardia). The slope of linear regression from deltapulse interval/deltaMAP was attenuated for both reflex bradycardia and tachycardia in normotensive rats (-0.47 ± 0.13 vs -0.94 ± 0.19 ms/mmHg and -0.80 ± 0.13 vs -1.11 ± 0.13 ms/mmHg), but only for reflex bradycardia in hypertensive rats (-0.15 ± 0.02 vs -0.23 ± 0.3 ms/mmHg). In addition, the MAP and HR responses to the Bezold-Jarisch reflex were 20-30% smaller in amiodarone-treated normotensive or hypertensive rats. The bradycardic response to peripheral chemoreflex activation with intravenous potassium cyanide was also attenuated by amiodarone in both normotensive (-30 ± 6 vs -49 ± 8 bpm) and hypertensive rats (-34 ± 13 vs -42 ± 10 bpm). On the basis of the well-known electrophysiological effects of amiodarone, the sinus node might be the responsible for the attenuation of the cardiovascular reflexes found in the present study.
Resumo:
The present study evaluated the acute effect of the intraperitoneal (ip) administration of a whey protein hydrolysate (WPH) on systolic arterial blood pressure (SBP) and renal sodium handling by conscious spontaneously hypertensive rats (SHR). The ip administration of WPH in a volume of 1 ml dose-dependently lowered the SBP in SHR 2 h after administration at doses of 0.5 g/kg (0.15 M NaCl: 188.5 ± 9.3 mmHg vs WPH: 176.6 ± 4.9 mmHg, N = 8, P = 0.001) and 1.0 g/kg (0.15 M NaCl: 188.5 ± 9.3 mmHg vs WPH: 163.8 ± 5.9 mmHg, N = 8, P = 0.0018). Creatinine clearance decreased significantly (P = 0.0084) in the WPH-treated group (326 ± 67 µL min-1 100 g body weight-1) compared to 0.15 M NaCl-treated (890 ± 26 µL min-1 100 g body weight-1) and captopril-treated (903 ± 72 µL min-1 100 g body weight-1) rats. The ip administration of 1.0 g WPH/kg also decreased fractional sodium excretion to 0.021 ± 0.019% compared to 0.126 ± 0.041 and 0.66 ± 0.015% in 0.15 M NaCl and captopril-treated rats, respectively (P = 0.033). Similarly, the fractional potassium excretion in WPH-treated rats (0.25 ± 0.05%) was significantly lower (P = 0.0063) than in control (0.91 ± 0.15%) and captopril-treated rats (1.24 ± 0.30%), respectively. The present study shows a decreased SBP in SHR after the administration of WPH associated with a rise in tubule sodium reabsorption despite an angiotensin I-converting enzyme (ACE)-inhibiting in vitro activity (IC50 = 0.68 mg/mL). The present findings suggest a pathway involving ACE inhibition but measurements of plasma ACE activity and angiotensin II levels are needed to support this suggestion.
Resumo:
Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.
Resumo:
The purpose of the present study was to determine the range of the influence of the baroreflex on blood pressure in chronic renal hypertensive rats. Supramaximal electrical stimulation of the aortic depressor nerve and section of the baroreceptor nerves (sinoaortic denervation) were used to obtain a global analysis of the baroreceptor-sympathetic reflex in normotensive control and in chronic (2 months) 1-kidney, 1-clip hypertensive rats. The fall in blood pressure produced by electrical baroreceptor stimulation was greater in renal hypertensive rats than in normotensive controls (right nerve: -47 ± 8 vs -23 ± 4 mmHg; left nerve: -51 ± 7 vs -30 ± 4 mmHg; and both right and left nerves: -50 ± 8 vs -30 ± 4 mmHg; P < 0.05). Furthermore, the increase in blood pressure level produced by baroreceptor denervation in chronic renal hypertensive rats was similar to that observed in control animals 2-5 h (control: 163 ± 5 vs 121 ± 1 mmHg; 1K-1C: 203 ± 7 vs 170 ± 5 mmHg; P < 0.05) and 24 h (control: 149 ± 3 vs 121 ± 1 mmHg; 1K-1C: 198 ± 8 vs 170 ± 5 mmHg; P < 0.05) after sinoaortic denervation. Taken together, these data indicate that the central and peripheral components of the baroreflex are acting efficiently at higher arterial pressure in renal hypertensive rats when the aortic nerve is maximally stimulated or the activity is abolished.
Resumo:
Angiotensin-converting enzyme inhibitors reduce blood pressure and attenuate cardiac and vascular remodeling in hypertension. However, the kinetics of remodeling after discontinuation of the long-term use of these drugs are unknown. Our objective was to investigate the temporal changes occurring in blood pressure and vascular structure of spontaneously hypertensive rats (SHR). Captopril treatment was started in the pre-hypertensive state. Rats (4 weeks) were assigned to three groups: SHR-Cap (N = 51) treated with captopril (1 g/L) in drinking water from the 4th to the 14th week; SHR-C (N = 48) untreated SHR; Wistar (N = 47) control rats. Subgroups of animals were studied at 2, 4, and 8 weeks after discontinuation of captopril. Direct blood pressure was recorded in freely moving animals after femoral artery catheterism. The animals were then killed to determine left ventricular hypertrophy (LVH) and the aorta fixed at the same pressure measured in vivo. Captopril prevented hypertension (105 ± 3 vs 136 ± 5 mmHg), LVH (2.17 ± 0.05 vs 2.97 ± 0.14 mg/g body weight) and the increase in cross-sectional area to luminal area ratio of the aorta (0.21 ± 0.01 vs 0.26 ± 0.02 μm²) (SHR-Cap vs SHR-C). However, these parameters increased progressively after discontinuation of captopril (22nd week: 141 ± 2 mmHg, 2.50 ± 0.06 mg/g, 0.27 ± 0.02 μm²). Prevention of the development of hypertension in SHR by using captopril during the prehypertensive period prevents the development of cardiac and vascular remodeling. Recovery of these processes follows the kinetic of hypertension development after discontinuation of captopril.
Resumo:
We investigated the effects of low ouabain concentrations on systolic (SAP) and diastolic (DAP) arterial pressures and on pressor reactivity in 3-month-old male spontaneously hypertensive rats (SHR). Arterial blood pressure (BP) and pressor reactivity to phenylephrine (PHE) were investigated before and after 0.18 μg/kg ouabain administration (N = 6). The influence of hexamethonium (N = 6), canrenone (N = 6), enalapril (N = 6), and losartan (N = 6) on ouabain actions was evaluated. Ouabain increased BP (SAP: 137 ± 5.1 to 150 ± 4.7; DAP: 93.7 ± 7.7 to 116 ± 3.5 mmHg; P<0.05) but did not change PHE pressor reactivity. Hexamethonium reduced basal BP in control but not in ouabain-treated rats. However, hexamethonium + ouabain increased DAP sensitivity to PHE. Canrenone did not affect basal BP but blocked ouabain effects on SAP. However, after canrenone + ouabain administration, DAP pressor reactivity to PHE still increased. Enalapril and losartan reduced BP and abolished SAP and DAP responses to ouabain. Enalapril + ouabain reduced DAP reactivity to PHE, while losartan + ouabain reduced SAP and DAP reactivity to PHE. In conclusion, a small dose of ouabain administered to SHR increased BP without altering PHE pressor reactivity. Although the renin-angiotensin system (RAS), Na+ pump and autonomic reflexes are involved in the effects of ouabain on PHE reactivity, central mechanisms might blunt the actions of ouabain on PHE pressor reactivity. The effect of ouabain on SAP seems to depend on the inhibition of both Na+ pump and RAS, whereas the effect on DAP seems to depend only on RAS.