950 resultados para SPENT FUELS
Resumo:
State and regional policies, such as low carbon fuel standards (LCFSs), increasingly mandate that transportation fuels be examined according to their greenhouse gas (GHG) emissions. We investigate whether such policies benefit from determining fuel carbon intensities (FCIs) locally to account for variations in fuel production and to stimulate improvements in FCI. In this study, we examine the FCI of transportation fuels on a lifecycle basis within a specific state, Minnesota, and compare the results to FCIs using national averages. Using data compiled from 18 refineries over an 11-year period, we find that ethanol production is highly variable, resulting in a 42% difference between carbon intensities. Historical data suggests that lower FCIs are possible through incremental improvements in refining efficiency and the use of biomass for processing heat. Stochastic modeling of the corn ethanol FCI shows that gains in certainty due to knowledge of specific refinery inputs are overwhelmed by uncertainty in parameters external to the refiner, including impacts of fertilization and land use change. The LCA results are incorporated into multiple policy scenarios to demonstrate the effect of policy configurations on the use of alternative fuels. These results provide a contrast between volumetric mandates and LCFSs. © 2011 Elsevier Ltd.
Resumo:
In this work, we performed an evaluation of decay heat power of advanced, fast spectrum, lead and molten salt-cooled reactors, with flexible conversion ratio. The decay heat power was calculated using the BGCore computer code, which explicitly tracks over 1700 isotopes in the fuel throughout its burnup and subsequent decay. In the first stage, the capability of the BGCore code to accurately predict the decay heat power was verified by performing a benchmark calculation for a typical UO2 fuel in a Pressurized Water Reactor environment against the (ANSI/ANS-5.1-2005, "Decay Heat Power in Light Water Reactors," American National Standard) standard. Very good agreement (within 5%) between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power for fast reactors with different coolants and conversion ratios, for which no standard procedure is currently available. Notable differences were observed for the decay power of the advanced reactor as compared with the conventional UO2 LWR. The importance of the observed differences was demonstrated by performing a simulation of a Station Blackout transient with the RELAP5 computer code for a lead-cooled fast reactor. The simulation was performed twice: using the code-default ANS-79 decay heat curve and using the curve calculated specifically for the studied core by BGCore code. The differences in the decay heat power resulted in failure to meet maximum cladding temperature limit criteria by ∼100 °C in the latter case, while in the transient simulation with the ANS-79 decay heat curve, all safety limits were satisfied. The results of this study show that the design of new reactor safety systems must be based on decay power curves specific to each individual case in order to assure the desired performance of these systems. © 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the basic feasibility of using reactor-grade Pu in fertile-free fuel (FFF) matrix in pressurized water reactors (PWRs). Several important issues were investigated in this work: the Pu loading required to achieve a specific interrefueling interval, the impact of inert matrix composition on reactivity constrained length of cycle, and the potential of utilizing burnable poisons (BPs) to alleviate degradation of the reactivity control mechanism and temperature coefficients. Although the subject was addressed in the past, no systematic approach for assessment of BP utilization in FFF cores was published. In this work, we examine all commercially available BP materials in all geometrical arrangements currently used by the nuclear industry with regards to their potential to alleviate the problems associated with the use of FFF in PWRs. The recently proposed MgO-ZrO2 solid-state solution fuel matrix, which appears to be very promising in terms of thermal properties and radiation damage resistance, was used as a reference matrix material in this work. The neutronic impact of the relative amounts of MgO and ZrO2 in the matrix were also studied. The analysis was performed with a neutron transport and fuel assembly burnup code BOXER. A modified linear reactivity model was applied to the two-dimensional single fuel assembly results to approximate the full core characteristics. Based on the results of the performed analyses, the Pu-loaded FFF core demonstrated potential feasibility to be used in existing PWRs. Major FFF core design problems may be significantly mitigated through the correct choice of BP design. It was found that a combination of BP materials and geometries may be required to meet all FFF design goals. The use of enriched (in most effective isotope) BPs, such as 167Er and 157Gd, may further improve the BP effectiveness and reduce the fuel cycle length penalty associated with their use.
Resumo:
Exposure to indoor air pollution (IAP) from the combustion of biomass fuels is an important cause of morbidity and mortality in developing countries. In the work discussed in this paper we evaluated the endocrine activity of soot particles from biomass fuels by using yeast bioassay. These pollutants could have beta-galactosidase activity with a relative potency (RP) about 10(-7)-10(-9) that of estradiol. Soot particles from wood and straw combustion only partially induced beta-galactosidase activity whereas others produced fully inductive activity in the yeast assay system. These pollutants did not have estrogen antagonist and progesterone agonist activity within the defined concentration range. However, these pollutants require 2-4 orders of magnitude higher IC50 to inhibit the activity of progesterone in a similar dose-response manner to mifepristone. We therefore propose that the endocrine activity of some environmental pollutants may be because of inhibition of the progesterone receptor (hPR). GC-MS results showed that substituted polycyclic aromatic hydrocarbon (PAH) compounds, substituted phenolic compounds and derivatives, aromatic carbonyl compounds, and phytosteroids in these soot particles may be mimicking endogenous hormones.
Resumo:
Boron removal is a critical issue in the production of drinking water and of ultra-pure water in the electronics industry. Boron rejection in a RO process is typically in the range of 40-60%. The objective of this study was to distinguish the factor contributing to enhanced boron rejection in reclamation of a spent rinse stream from a plating operation. The effects of different known components used in the feed on boron removal were investigated in the laboratory. The results indicated that glycolic acid and antifoulants could not individually enhance boron rejection in a RO process. A high boron rejection of 95% was achieved as the concentration of iron in the feed was 10 times higher than that of boron, which might be due to formation of a complex between iron oxide and boron. The finding was confirmed in a pilot study.
Resumo:
Functional food ingredients, with scientifically proven and validated bioactive effects, present an effective means of inferring physiological health benefits to consumers to reduce the risk of certain diseases. The search for novel bioactive compounds for incorporation into functional foods is particularly active, with brewers’ spent grain (BSG, a brewing industry co-product) representing a unique source of potentially bioactive compounds. The DNA protective, antioxidant and immunomodulatory effects of phenolic extracts from both pale (P1 - P4) and black (B1 – B4) BSG were examined. Black BSG extracts significantly (P < 0.05) protected against DNA damage induced by hydrogen peroxide (H2O2) and extracts with the highest total phenolic content (TPC) protected against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative DNA damage, measured by the comet assay. Cellular antioxidant activity assays were used to measured antioxidant potential in the U937 cell line. Extracts P1 – P3 and B2 - B4 demonstrated significant (P < 0.05) antioxidant activity, measured by the superoxide dismutase (SOD) activity, catalase (CAT) activity and gluatathione (GSH) content assays. Phenolic extracts P2 and P3 from pale BSG possess anti-inflammatory activity measured in concanavalin-A (conA) stimulated Jurkat T cells by an enzyme-linked immunosorbent assay (ELISA); significantly (P < 0.05) reducing production of interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ). Black BSG phenolic extracts did not exhibit anti-inflammatory effects in vitro. Hydroxycinnamic acids (HA) have previously been shown to be the phenolic acids present at highest concentration in BSG; therefore the HA profile of the phenolic extracts used in this research, the original barley (before brewing) and whole BSG was characterised and quantified using high performance liquid chromatography (HPLC). The concentration of HA present in the samples was in the order of ferulic acid (FA) > p-coumaric acid (p-CA) derivatives > FA derivatives > p-CA > caffeic acid (CA) > CA derivatives. Results suggested that brewing and roasting decreased the HA content. Protein hydrolysates from BSG were also screened for their antioxidant and anti-inflammatory potential. A total of 34 BSG protein samples were tested. Initial analyses of samples A – J found the protein samples did not exert DNA protective effects (except hydrolysate H) or antioxidant effects by the comet and SOD assays, respectively. Samples D, E, F and J selectively reduced IFN-γ production (P < 0.05) in Jurkat T cells, measured using enzyme linked immunosorbent assay (ELISA). Further testing of hydrolysates K – W, including fractionated hydrolysates with molecular weight < 3, < 5 and > 5 kDa, found that higher molecular weight (> 5 kDa) and unfractionated hydrolysates demonstrate greatest anti-inflammatory effects, while fractionated hydrolysates were also shown to have antioxidant activity, by the SOD activity assay. A commercially available yogurt drink (Actimel) and snack-bar and chocolate-drink formulations were fortified with the most bioactive phenolic and protein samples – P2, B2, W, W < 3 kDa, W < 5 kDa, W > 5 kDa. All fortified foods were subjected to a simulated gastrointestinal in vitro digestion procedure and bioactivity retention in the digestates was determined using the comet and ELISA assays. Yogurt fortified with B2 digestate significantly (P < 0.05) protected against H2O2-induced DNA damage in Caco-2 cells. Greatest immunomodulatory activity was demonstrated by the snack-bar formulation, significantly (P < 0.05) reducing IFN-γ production in con-A stimulated Jurkat T cells. Hydrolysate W significantly (P < 0.05) increased the IFN-γ reducing capacity of the snack-bar. Addition of fractionated hydrolysate W < 3 kDa and W < 5 kDa to yogurt also reduced IL-2 production to a greater extent than the unfortified yogurt (P < 0.05).
Resumo:
The recovery of platinum group metals (PGMs) from catalytic converters of spent exhaust systems is considered in this paper. To be cost-effective, recovery processes must be well over 90% efficient and so the optimisation of their operation is vital. Effective optimisation requires a sound understanding of the operation and the underlying process mechanisms. This paper focuses on pyrometallurgical recovery operations used and typified by the Johnson–Matthey process. Analysis of this process reveals that it cannot be simply explained by the gravity model that is normally assumed. The analysis reveals that the affinity of PGM particles for the melted collector metal is a key factor in the behaviour of the process. A rational explanation of the key issues that govern the process behaviour is proposed and shown to be consistent with available operational data. The results generated would be applicable to other similar processes.
Resumo:
Using multiple lines of evidence, we demonstrate that volcanic ash deposition in August 2008 initiated one of the largest phytoplankton blooms observed in the subarctic North Pacific. Unusually widespread transport from a volcanic eruption in the Aleutian Islands, Alaska deposited ash over much of the subarctic NE Pacific, followed by large increases in satellite chlorophyll. Surface ocean pCO2, pH, and fluorescence reveal that the bloom started a few days after ashfall. Ship-based measurements showed increased dominance by diatoms. This evidence points toward fertilization of this normally iron-limited region by ash, a relatively new mechanism proposed for iron supply to the ocean. The observations do not support other possible mechanisms. Extrapolation of the pCO2 data to the area of the bloom suggests a modest ∼0.01 Pg carbon export from this event, implying that even large-scale iron fertilization at an optimum time of year is not very efficient at sequestering atmospheric CO2.