1000 resultados para SPECIES MYOTIS-MYOTIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study the incidence of moths and beetles was examined from feces samples of bats that use different foraging behaviors. Twenty sites around the Fazenda Intervales, a Field Research Station located in São Paulo State, in southeastern Brazil were sampled. Feces were collected from bats caught in mist nets, Turtle Traps or hand nets and, in one case, from beneath a roost. Feces samples were taken from six species of bats: Micronycteris megalotis (Gray, 1842), Mimon bennettii (Gray, 1838), Furipterus horrens (F. Cuvier, 1828), Myotis riparius Handley, 1960, Myotis ruber (E. Geoffroy, 1806) and Histiotus velalus (I. Geoffroy, 1824). To record and describe the frequencies dominating bat echolocation calls, an Anabat II bat detector coupled with an Anabat ZCA interfaces and DOS laptop computers were used. The data show that Furipterus horrens feeds extensively on moths, as predicted from the features of its echolocation calls. Gleaning bats, whose echolocation calls are much less conspicuous to moths take a wide range of insect (and other) prey.
Resumo:
OBJETIVO: Os relatos sobre a ocorrência de raiva em morcegos no Brasil são esporádicos e isolados. Assim, o objetivo do estudo foi descrever a detecção do vírus da raiva em morcegos do Estado de São Paulo. MÉTODOS: Foram analisados 7.393 morcegos provenientes de 235 municípios do norte e noroeste do Estado de São Paulo, no período de 1997 a 2002 e identificados por meio de características morfológicas e morfométricas. Para a detecção do antígeno viral foi utilizada a técnica de imunofluorescência direta e o isolamento do vírus foi realizado por inoculação em camundongos. RESULTADOS: Das amostras examinadas, 1,3% foram positivas para raiva, com variação de 0,2% em 1997 a 1,6% em 2001. Foram encontrados 98 morcegos com o vírus, 87 deles em área urbana. O vírus da raiva foi detectado pela imunofluorescência direta em 77 do total de amostras positivas, enquanto 92 produziram doença em camundongos inoculados e o período de incubação variou entre 4-23 dias. em 43 municípios foi encontrado pelo menos um morcego positivo. Entre as espécies analisadas o vírus da raiva foi detectado com maior freqüência (33,7%) em Artibeus lituratus. Os vespertilionideos do gênero Eptesicus e Myotis totalizaram 24,5% dos morcegos positivos e as espécies do gênero Molossus (Molossus molossus e Molossus rufus), 14,3%. A distribuição do vírus da raiva foi semelhante entre fêmeas (33; 48,5%) e machos (35; 51,5%). CONCLUSÕES: Morcegos positivos para raiva foram encontrados em situações que colocam em risco tanto a população humana como animais de estimação, exigindo medidas voltadas para o manejo destas espécies e de educação da população.
Resumo:
The diagnosis of rabies in bats is usually performed using the brain of suspected animals. The main hypothesis tested by the present study was whether the aspiration method using a plastic pipette (Pasteur type) was effective in the collection of bat brain sample for rabies diagnosis when compared to the skull-opening method. A total of 200 bats of 4 species were studied: Molossus rufus E. Geoffroy, 1805, Molossus molossus (Pallas, 1766), Artibeus lituratus (Olfers, 1818) and Myotis nigricans (Schinz, 1821). The proportion of brain weight compared to body weight was statistically higher when using the traditional method, although the brain mass collected by the aspiration method was enough for rabies diagnosis and did not damage any skull biometric characteristics. The results demonstrate that both collection methods detected positive samples, while the aspiration method has the advantage of skull preservation, permitting the identification of the species.
Resumo:
Bats are hosts of a rich diversity of microorganisms. Many studies indicate a close link between bats and fungi with pathogenic potential, especially for living in environments such as caves, caverns and hollow trees, favorable to the maintenance and spread of fungi. The objective was to study the gastrointestinal mycoflora of bats. Of the 98 samples belonging to 11 species of bats coming from 15 studied cities, 20% of the species were Carollia perspicillata, 19% Artibeus lituratus, 17% Molossus rufus, 13% Glossophaga soricina, 9% Nyctinomops macrotis, 8% Molossus molossus, 7% Desmodus rotundus, 2% Lasiurus ega and 1% Eptesicus furinalis, Myotis nigricans and Tadarida brasiliensis. The genus Aspergillus sp. was isolated from 29% of the samples, followed by 6% Microsporum sp. and Penicillium sp. 4% Trichophyton sp. and zygomycetes and 2% Fusarium sp. Of yeast species, 14% were from Rhodotorula sp., 10% Candida sp. and 2% Cryptococcus sp., 22% of isolates remained unidentified. All 82 cultures of organs were negative for Histoplasma capsulatum. There was a statistically significant association between the results of microbiological culture and bat species (p < 0.05). We conclude that the bats can act as disperser agents of fungi with pathogenic potential, although other studies should be performed to establish strategies to identify the main factors correlated with the growth and spread of microorganisms in nature and implication of bats in the epidemiological cycle.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present thesis I examined individual and sex-specific habitat use and site fidelity in the western barbastelle bat, Barbastella barbastellus, using data from a four-year monitoring in a Special Area of Conservation in Rhineland-Palatinate, Germany. The western barbastelle occurs in central and southern Europe from Portugal to the Caucasus, but is considered to be rare in large parts of its range. Up to now, long-term field studies to assess interannual site fidelity and the possible effects of intra- and interspecific competition have not been studied in this species. Nevertheless, such data provide important details to estimate the specific spatial requirements of its populations, which in turn can be incorporated in extended conservation actions. I used radio-telemetry, home range analyses und automated ultrasound detection to assess the relation between landscape elements and western barbastelle bats and their roosts. In addition, I estimated the degree of interspecific niche overlap with two selected forest-dwelling bat species, Bechstein's bat (Myotis bechsteinii) and the brown long-eared bat (Plecotus auritus). Intra- and interannual home range overlap analyses of female B. barbastellus revealed that fidelity to individual foraging grounds, i.e. a traditional use of particular sites, seems to effect the spatial distribution of home ranges more than intraspecific competition among communally roosting females. The results of a joint analysis of annual maternity roost selection and flight activities along commuting corridors highlight the necessity to protect roost complexes in conjunction with commuting corridors. Using radio-tracking data and an Euclidean distance approach I quantified the sex-specific and individual habitat use by female and male western barbastelle bats within their home ranges. My data indicated a partial sexual segregation in summer habitats. Females were found in deciduous forest patches and preferably foraged along linear elements within the forest. Males foraged closer to forest edges and in open habitats. Finally, I examined the resource partitioning between the western barbastelle bat and two syntopic bat species with a potential for interspecific competition due to similarities in foraging strategies, prey selection and roost preferences. Simultaneous radio-tracking of mixed-species pairs revealed a partial spatial separation of the three syntopic bat species along a gradient from the forest to edge habitats and open landscape. Long-eared bats were found close to open habitats which were avoided by the other two species. B. barbastellus preferred linear landscape elements (edge habitats) and forests, M. bechsteinii also preferred forest habitats. Only little overlap in terms of roost structure and tree species selection was found.
Resumo:
White-nose syndrome (WNS) has caused recent catastrophic declines among multiple species of bats in eastern North America1, 2. The disease’s name derives from a visually apparent white growth of the newly discovered fungus Geomyces destructans on the skin (including the muzzle) of hibernating bats1, 3. Colonization of skin by this fungus is associated with characteristic cutaneous lesions that are the only consistent pathological finding related to WNS4. However, the role of G. destructans in WNS remains controversial because evidence to implicate the fungus as the primary cause of this disease is lacking. The debate is fuelled, in part, by the assumption that fungal infections in mammals are most commonly associated with immune system dysfunction5, 6, 7. Additionally, the recent discovery that G. destructans commonly colonizes the skin of bats of Europe, where no unusual bat mortality events have been reported8, 9, 10, has generated further speculation that the fungus is an opportunistic pathogen and that other unidentified factors are the primary cause of WNS11, 12. Here we demonstrate that exposure of healthy little brown bats (Myotis lucifugus) to pure cultures of G. destructans causes WNS. Live G. destructans was subsequently cultured from diseased bats, successfully fulfilling established criteria for the determination ofG. destructans as a primary pathogen13. We also confirmed that WNS can be transmitted from infected bats to healthy bats through direct contact. Our results provide the first direct evidence that G. destructans is the causal agent of WNS and that the recent emergence of WNS in North America may represent translocation of the fungus to a region with a naive population of animals8. Demonstration of causality is an instrumental step in elucidating the pathogenesis14 and epidemiology15 of WNS and in guiding management actions to preserve bat populations against the novel threat posed by this devastating infectious disease.
Resumo:
White-nose syndrome (WNS) is a disease that has caused the mass mortality of hibernating bat species. Since its first discovery in the winter of 2006-2007, an estimated five million bats or more have been killed. Although infection with Pseudogymnoascus destructans (Pd, the causative agent of WNS) does not always result in death, bats that survive Pd infection may experience fitness consequences. To understand the physiological consequences of WNS, I measured reproductive rates of free-ranging hibernating bat species of the Northeastern United States. In addition, captive little brown myotis (Myotis lucifugus) bats that were infected by Pd but survived (¿WNS survivors¿) and uninfected bats were studied in order to understand the potential consequences (e.g., lower reproductive rates, decreased ability to heal wounds, degradation of wing tissue, and altered metabolic rates) of surviving WNS. No differences in reproductive rates were found between WNS-survivors and uninfected bats in either the field or in captivity. In addition, wound healing was not affected by Pd infection. However, wing tissue degradation was worse for little brown myotis 19 days post-hibernation, and mass specific metabolic rate (MSMR) was significantly higher for those infected with Pd 22 days post-hibernation. While it is clear that these consequences are a direct result of Pd infection, further research investigating the long-term consequences for both mothers and pups is necessary.
Resumo:
Abundant material of turtles from the early Oligocene site of Boutersem-TGV (Boutersem, Belgium), is presented here. No information on the turtles found there was so far available. All the turtle specimens presented here are attributable to a single freshwater taxon that is identified as a member of Geoemydidae, Cuvierichelys. It is the first representative of the ‘Palaeochelys s. l.–Mauremys’ group recognized in the Belgian Paleogene record. This material, which allows to know all the elements of both the carapace and the plastron of the taxon, cannot be attributed to the only species of the genus Cuvierichelys so far identified in the Oligocene, the Spanish form Cuvierichelys iberica. The taxon from Boutersem is recognized as Cuvierichelys parisiensis. Thus, both the paleobiogeographic and the biostratigraphic distributions of Cuvierichelys parisiensis are extended, its presence being confirmed for the first time outside the French Eocene record. The validity of some European forms is refuted, and several characters previously proposed as different between Cuvierichelys iberica and Cuvierichelys parisiensis are recognized as subjected to intraspecific variability.
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.