934 resultados para SPECIES DISTRIBUTION MODELS
Resumo:
Recent studies have shown differences in the epidemiology of invasive infections caused by Candida species worldwide. In the period comprising August 2002 to August 2003, we performed a study in Santa Casa Complexo Hospitalar, Brazil, to determine Candida species distribution associated with candidemia and their antifungal susceptibility profiles to amphotericin B, fluconazole and itraconazole. Antifungal susceptibility was tested according to the broth microdilution method described in the NCCLS (M27A-2 method). Only one sample from each patient was analyzed (the first isolate). Most of the episodes had been caused by species other than C. albicans (51.6%), including C. parapsilosis (25.8%), C. tropicalis (13.3%), C. glabrata (3.3%), C. krusei (1.7%), and others (7.5%). Dose-dependent susceptibility to itraconazole was observed in 14.2% of strains, and dose-dependent susceptibility to fluconazole was found in 1.6%. Antifungal resistance was not found, probably related to low use of fluconazole. Further epidemiological surveillance is needed.
Resumo:
Although Candida albicans is the main cause of fungal esophagitis, other species such as C. tropicalis, C. krusei and C. stellatoidea have also been implicated. Several studies have identified risk factors for C. albicans esophagitis. However, data for non-C. albicans species is still sparse. The aim of this study was to determine the etiology of Candida esophagitis in our medical centre over an 18-month period. Additionally, we aimed to investigate predisposing conditions for esophageal candidosis caused by different Candida species. A total of 21,248 upper gastroscopies were performed in Santa Casa Complexo Hospitalar between January 2005 and July 2006. The prevalence of Candida esophagitis was 0.74% (n = 158). C. albicans caused the vast majority of infections (96.2%), followed by C. tropicalis (2.5%), C. lusitaniae (0.6%) and C. glabrata (0.6%). There were 81 women (51.3%) and 77 men (48.7%). No case of mixed infection occurred. Concomitant oral candidosis was documented for 10.8% (n = 17). Most of cases (55.1%) involved outpatients. Around one fifth of patients in our cohort had no identifiable risk factors for esophageal candidosis (20.8%). Since nearly all infections were caused by C. albicans we were not able to determine risk factors for esophagitis caused by other Candida species.
Resumo:
Climate change is emerging as one of the major threats to natural communities of the world’s ecosystems; and biodiversity hotspots, such as Madeira Island, might face a challenging future in the conservation of endangered land snails’ species. With this thesis, progresses have been made in order to properly understand the impact of climate on these vulnerable taxa; and species distribution models coupled with GIS and climate change scenarios have become crucial to understand the relations between species distribution and environmental conditions, identifying threats and determining biodiversity vulnerability. With the use of MaxEnt, important changes in the species suitable areas were obtained. Laurel forest species, highly dependent on precipitation and relative humidity, may face major losses on their future suitable areas, leading to the possible extinction of several endangered species, such as Leiostyla heterodon. Despite the complexity of the biological systems, the intrinsic uncertainty of species distribution models and the lack of information about land snails’ functional traits, this analysis contributed to a pioneer study on the impacts of climate change on endemic species of Madeira Island. The future inclusion of predictions of the effect of climate change on species distribution as part of IUCN assessments could contribute to species prioritizing, promoting specific management actions and maximizing conservation investment.
Resumo:
INTRODUCTION: In this study, we aimed at identifying Candida isolates obtained from blood, urine, tracheal secretion, and nail/skin lesions from cases attended at the Hospital Universitário de Londrina over a 3-year period and at evaluating fluconazole susceptibilities of the isolates. METHODS: Candida isolates were identified by polymerase chain reaction (PCR) using species-specific forward primers. The in vitro fluconazole susceptibility test was performed according to EUCAST-AFST reference procedure. RESULTS: Isolates were obtained from urine (53.4%), blood cultures (19.2%), tracheal secretion (17.8%), and nail/skin lesions (9.6%). When urine samples were considered, prevalence was similar in women (45.5%) and in men (54.5%) and was high in the age group >61 years than that in younger ones. For blood samples, prevalence was high in neonates (35%) and advanced ages (22.5%). For nail and skin samples, prevalence was higher in women (71.4%) than in men (28.6%). Candida albicans was the most frequently isolated in the hospital, but Candida species other than C. albicans accounted for 64% of isolates, including predominantly Candida tropicalis (33.2%) and Candida parapsilosis (19.2%). The trend for non-albicans Candida as the predominant species was noted from all clinical specimens, except from urine samples. All Candida isolates were considered susceptible in vitro to fluconazole with the exception of isolates belonging to the intrinsically less-susceptible species C. glabrata. CONCLUSIONS: Non-albicans Candida species were more frequently isolated in the hospital. Fluconazole resistance was a rare finding in our study.
Resumo:
We investigate palm species distribution, richness and abundance along the Mokoti, a seasonally-dry river of southeastern Amazon and compare it to the patterns observed at a large scale, comprising the entire Brazilian territory. A total of 694 palms belonging to 10 species were sampled at the Mokoti River basin. Although the species showed diverse distribution patterns, we found that local palm abundance, richness and tree basal area were significantly higher from the hills to the bottomlands of the study region, revealing a positive association of these measures with moisture. The analyses at the larger spatial scale also showed a strong influence of vapor pressure (a measure of moisture content of the air, in turn modulated by temperature) and seasonality in temperature: the richest regions were those where temperature and humidity were simultaneously high, and which also presented a lower degree of seasonality in temperature. These results indicate that the distribution of palms seems to be strongly associated with climatic variables, supporting the idea that, by 'putting all the eggs in one basket' (a consequence of survival depending on the preservation of a single irreplaceable bud), palms have become vulnerable to extreme environmental conditions. Hence, their distribution is concentrated in those tropical and sub-tropical regions with constant conditions of (mild to high) temperature and moisture all year round.
Resumo:
In this work, I apply a simple protocol to species occurrence inventory of Odonata in a region of Maranhão state which has very few distributional records. Some relations between species occurrence and environmental characteristics are discussed, mainly in relation to the high occurrence of Erythemis. Eighteen new records are presented discussing the role of this approach to generate useful information for conservation purposes.
Resumo:
Species distribution models (SDMs) are increasingly used to predict environmentally induced range shifts of habitats of plant and animal species. Consequently SDMs are valuable tools for scientifically based conservation decisions. The aims of this paper are (1) to identify important drivers of butterfly species persistence or extinction, and (2) to analyse the responses of endangered butterfly species of dry grasslands and wetlands to likely future landscape changes in Switzerland. Future land use was represented by four scenarios describing: (1) ongoing land use changes as observed at the end of the last century; (2) a liberalisation of the agricultural markets; (3) a slightly lowered agricultural production; and (4) a strongly lowered agricultural production. Two model approaches have been applied. The first (logistic regression with principal components) explains what environmental variables have significant impact on species presence (and absence). The second (predictive SDM) is used to project species distribution under current and likely future land uses. The results of the explanatory analyses reveal that four principal components related to urbanisation, abandonment of open land and intensive agricultural practices as well as two climate parameters are primary drivers of species occurrence (decline). The scenario analyses show that lowered agricultural production is likely to favour dry grassland species due to an increase of non-intensively used land, open canopy forests, and overgrown areas. In the liberalisation scenario dry grassland species show a decrease in abundance due to a strong increase of forested patches. Wetland butterfly species would decrease under all four scenarios as their habitats become overgrown
Resumo:
Aim Understanding the stability of realised niches is crucial for predicting the responses of species to climate change. One approach is to evaluate the niche differences of populations of the same species that occupy regions that are geographically disconnected. Here, we assess niche conservatism along thermal gradients for 26 plant species with a disjunct distribution between the Alps and the Arctic. Location European Alps and Norwegian Finnmark. Methods We collected a comprehensive dataset of 26 arctic-alpine plant occurrences in two regions. We assessed niche conservatism through a multi-species comparison and analysed species rankings at cold and warm thermal limits along two distinct gradients corresponding to (1) air temperatures at 2 meters above ground level and (2) elevation distances to the treeline (TLD) for the two regions. We assessed whether observed relationships were close to those predicted under thermal limit conservatism. Results We found a weak similarity in species ranking at the warm thermal limits. The range of warm thermal limits for the 26 species was much larger in the Alps than in Finnmark. We found a stronger similarity in species ranking and correspondence at the cold thermal limit along the gradients of 2-m temperature and TLD. Yet, along the 2-m temperature gradient, the cold thermal limits of species in the Alps were lower on average than those in Finnmark. Main conclusion We found low conservatism of the warm thermal limits but a stronger conservatism of the cold thermal limits. We suggest that biotic interactions at the warm thermal limit likely modulate species responses more strongly than at the cold limit. The differing biotic context between the two regions is likely responsible for the observed differences in realised niches.
Resumo:
A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate-based species distribution models (S-SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate-based S-SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate-based S-SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S-SDMs were more accurate in plant-rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate-based S-SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate-based S-SDMs.
Resumo:
Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions
Resumo:
From March 1999 to March 2000, we conducted a prospective multicenter study of candidemia involving five tertiary care hospitals from four countries in Latin America. Yeast isolates were identified by classical methods and the antifungal susceptibility profile was determined according to the National Committee for Clinical Laboratory Standards microbroth assay method. During a 12 month-period we were able to collect a total of 103 bloodstream isolates of Candida spp. C. albicans was the most frequently isolated species accounting for 42% of all isolates. Non-albicans Candida species strains accounted for 58% of all episodes of candidemia and were mostly represented by C. tropicalis (24.2%) and C. parapsilosis (21.3%). It is noteworthy that we were able to identify two cases of C. lusitaniae from different institutions. In our casuistic, non-albicans Candida species isolates related to candidemic episodes were susceptible to fluconazole. Continuously surveillance programs are needed in order to identify possible changes in the species distribution and antifungal susceptibility patterns of yeasts that may occurs after increasing the use of azoles in Latin American hospitals.
Resumo:
Aim This study compares the direct, macroecological approach (MEM) for modelling species richness (SR) with the more recent approach of stacking predictions from individual species distributions (S-SDM). We implemented both approaches on the same dataset and discuss their respective theoretical assumptions, strengths and drawbacks. We also tested how both approaches performed in reproducing observed patterns of SR along an elevational gradient.Location Two study areas in the Alps of Switzerland.Methods We implemented MEM by relating the species counts to environmental predictors with statistical models, assuming a Poisson distribution. S-SDM was implemented by modelling each species distribution individually and then stacking the obtained prediction maps in three different ways - summing binary predictions, summing random draws of binomial trials and summing predicted probabilities - to obtain a final species count.Results The direct MEM approach yields nearly unbiased predictions centred around the observed mean values, but with a lower correlation between predictions and observations, than that achieved by the S-SDM approaches. This method also cannot provide any information on species identity and, thus, community composition. It does, however, accurately reproduce the hump-shaped pattern of SR observed along the elevational gradient. The S-SDM approach summing binary maps can predict individual species and thus communities, but tends to overpredict SR. The two other S-SDM approaches the summed binomial trials based on predicted probabilities and summed predicted probabilities - do not overpredict richness, but they predict many competing end points of assembly or they lose the individual species predictions, respectively. Furthermore, all S-SDM approaches fail to appropriately reproduce the observed hump-shaped patterns of SR along the elevational gradient.Main conclusions Macroecological approach and S-SDM have complementary strengths. We suggest that both could be used in combination to obtain better SR predictions by following the suggestion of constraining S-SDM by MEM predictions.
Resumo:
Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.
Resumo:
Climate change has created the need for new strategies in conservation planning that account for the dynamics of factors threatening endangered species. Here we assessed climate change threat to the European otter, a flagship species for freshwater ecosystems, considering how current conservation areas will perform in preserving the species in a climatically changed future. We used an ensemble forecasting approach considering six modelling techniques applied to eleven subsets of otter occurrences across Europe. We performed a pseudo-independent and an internal evaluation of predictions. Future projections of species distribution were made considering the A2 and B2 scenarios for 2080 across three climate models: CCCMA-CGCM2, CSIRO-MK2 and HCCPR HAD-CM3. The current and the predicted otter distributions were used to identify priority areas for the conservation of the species, and overlapped to existing network of protected areas. Our projections show that climate change may profoundly reshuffle the otter's potential distribution in Europe, with important differences between the two scenarios we considered. Overall, the priority areas for conservation of the otter in Europe appear to be unevenly covered by the existing network of protected areas, with the current conservation efforts being insufficient in most cases. For a better conservation, the existing protected areas should be integrated within a more general conservation and management strategy incorporating climate change projections. Due to the important role that the otter plays for freshwater habitats, our study further highlights the potential sensitivity of freshwater habitats in Europe to climate change.
Resumo:
Studies of species range determinants have traditionally focused on abiotic variables (typically climatic conditions), and therefore the recent explicit consideration of biotic interactions represents an important advance in the field. While these studies clearly support the role of biotic interactions in shaping species distributions, most examine only the influence of a single species and/or a single interaction, failing to account for species being subject to multiple concurrent interactions. By fitting species distribution models (SDMs), we examine the influence of multiple vertical (i.e., grazing, trampling, and manuring by mammalian herbivores) and horizontal (i.e., competition and facilitation; estimated from the cover of dominant plant species) interspecific interactions on the occurrence and cover of 41 alpine tundra plant species. Adding plant-plant interactions to baseline SDMs (using five field-quantified abiotic variables) significantly improved models' predictive power for independent data, while herbivore-related variables had only a weak influence. Overall, abiotic variables had the strongest individual contributions to the distribution of alpine tundra plants, with the importance of horizontal interaction variables exceeding that of vertical interaction variables. These results were consistent across three modeling techniques, for both species occurrence and cover, demonstrating the pattern to be robust. Thus, the explicit consideration of multiple biotic interactions reveals that plant-plant interactions exert control over the fine-scale distribution of vascular species that is comparable to abiotic drivers and considerably stronger than herbivores in this low-energy system.