972 resultados para SONIC-HEDGEHOG
Resumo:
Medulloblastoma is the most common malignant childhood brain tumor and is associated with a poor outcome. There is an urgent need to develop novel targeted therapeutic approaches for medulloblastoma, which will arise from an enhanced understanding of the disease at the molecular level. Medulloblastoma has been recognized to be a heterogeneous disease, and no recurrent cancer gene mutations have been found, although many of the mutations described so far affect key intracellular signaling pathways, such as sonic hedgehog (SHH) and Wnt/β-catenin. The PI3K/AKT/mTOR (PAM) signaling pathway controls key cellular responses, such as cell growth and proliferation, survival, migration and metabolism. Over the last decades, it has been recognized that this intracellular signaling pathway is frequently activated by genetic and epigenetic alterations in malignant brain tumors, including medulloblastoma. Clinical trials have started to evaluate the safety and efficacy of agents targeting this pathway in malignant brain tumors. Due to the complexity of the PAM signaling pathway, there remain significant difficulties in the development of novel therapeutic approaches. The future challenges in developing effective treatments for cancer patients include the development of predictive biomarkers and combinatorial approaches to effectively target multiple signal transduction pathways. In this review article, we will summarize the current knowledge about the role of PAM signaling in medulloblastoma and discuss the strategies that are currently being evaluated with targeted agents against this pathway.
Resumo:
During early mouse neural development, bone morphogenetic protein (BMP) signaling patterns the dorsal neural tube and defines distinct neural progenitor cell domains along the dorsoventral axis. Unlike the ventral signaling molecule Sonic hedgehog, which has long-range activity by establishing a concentration gradient in the ventral neural tube, these dorsally expressed BMPs appear to have a limited domain of action. This raises questions as to how BMP activity is restricted locally and how restricted BMP signaling directs dorsal neural patterning and differentiation. I hypothesize that BMPs are restricted in the dorsal neural tube for correct dorsoventral patterning. ^ Previous studies have shown that the positively charged basic amino acids located at the N-terminus of several BMPs are essential for heparin binding and diffusion. This provides a novel tool to address these questions. Here I adapted a UAS/GAL4 bigenic mouse system to control the ectopic expression of BMP4 and a mutant form of BMP4 that lacks a subset of the N-terminal basic amino acids. The target genes, UAS-Bmp4 and UAS-mBmp4 , were introduced into the Hprt locus by gene targeting in mouse embryonic stem cells. The expression of the GAL4 transactivator was driven by a roof plate specific Wnt1 promoter. ^ The bigenic mouse embryos exhibit phenotype variations, ranging from mid/hindbrain defects, hemorrhage, and eye abnormalities to vasculture formation. Embryonic death starts around E11.5 because of severe hemorrhage. The different expression levels of the activated transgene may account for the phenotype variation. Further marker analysis reveals that mutant BMP4 induces ectopic expression of the dorsal markers MSX1/2 and PAX7 in the ventral neural tube. In addition, the expression of the ventral neural marker NKX2.2 is affected by the expanded BMP4 activity, indicating that ectopic BMP signaling can antagonize ventral signaling. Comparison of the phenotypes of the Wnt1/ Bmp4 and Wnt1/mBmp4 bigenic embryos that express transgenes at the same level, respectively, shows that mutant BMP4 causes the expansion of dorsal neural fates ventrally while wild type BMP4 does not, suggesting that mutant BMP4 acts farther than wild type BMP4. Together, these data suggest that the N-terminus basic amino acid core controls BMP4 long-range activity in neural development, and that BMP signaling patterns the dorsal neural tube through a secondary signaling pathway that involves homeodomain transcription factors MSX1/2 and PAX7. ^
Resumo:
Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^
Resumo:
Bcl-2, a crucial regulator of cell survival, is frequently overexpressed in basal cell carcinomas (BCCs), the most commonly diagnosed cancers. Regulation of bcl-2 expression in epidermal keratinocytes is not well characterized. In the epidermis, bcl-2 is expressed only in keratinocytes of the basal layer and the outer root sheath of hair follicles and no bcl-2 expression in suprabasalar keratinocytes. The calcium gradient in the epidermis is a potent regulator of keratinocyte differentiation. Increasing calcium concentrations associated with differentiation, resulted in the downregulation of a 2.9 kb bcl-2 promoter luciferase construct. The AP-1 family of transcription factors is differentially expressed in the strata of the epidermis and has been shown to be involved in the stage specific expression of numerous differentiation markers in the epidermis. In silico analysis of the bcl-2 promoter and gene reporter assays showed that co-transfection of JUNB and JUND, but not other AP-1 dimers, caused a significant upregulation of the bcl-2 promoter in primary keratinocytes. Immunoelectrophoretic mobility shift assays, in vivo chromatin immunoprecipitation (ChIP) studies and mutational analysis of AP-1 binding site 3 on the bcl-2 promoter identified it as the site involved in bcl-2 regulation. Utilizing site directed mutants, we determined that phosphorylation at Ser90/Ser100 residues of JUND is required for the activation of the bcl-2 promoter. ^ The sonic hedgehog (SHH) pathway is frequently deregulated in BCCs and, we have shown that GLI1 upregulates bcl-2 in keratinocytes. While examining potential regulation of the SHH pathway extracellular calcium, we found that higher calcium concentrations are associated with lowered HH pathway activity and upregulation of suppressor of fused (SUFU) which negatively regulates the SHH pathway. ChIP assays, and in vivo mouse models, show that ΔNp63α, a crucial regulator of epidermal development, binds and activates the SUFU promoter in differentiating keratinocytes. Increasing SUFU levels prevent transactivation of the bcl-2 promoter. In vitro SUFU knockdown along with in vivo SUFU+/− murine models demonstrate a significant upregulation of bcl-2 expression. ^ In conclusion, the spatial and temporal expression of bcl-2 during keratinocyte differentiation in the epidermis is a complex process requiring cooperative interactions of specific signaling cascades and transcription factors. ^
Resumo:
Cell differentiation and pattern formation are fundamental processes in animal development that are under intense investigation. The mouse retina is a good model to study these processes because it has seven distinct cell types, and three well-laminated nuclear layers that form during embryonic and postnatal life. β-catenin functions as both the nuclear effector for the canonical Wnt pathway and a cell adhesion molecule, and is required for the development of various organs. To study the function of β-catenin in retinal development, I used a Cre-loxP system to conditionally ablate β-catenin in the developing retina. Deletion of β-catenin led to disrupted laminar structure but did not affect the differentiation of any of the seven cell types. Eliminating β-catenin did not reduce progenitor cell proliferation, although enhanced apoptosis was observed. Further analysis showed that disruption of cell adhesion was the major cause of the observed patterning defects. Overexpression of β-catenin during retinal development also disrupted the normal retinal lamination and caused a transdifferentiation of neurons into pigmented cells. The results indicate that β-catenin functions as a cell adhesion molecule but not as a Wnt pathway component during retinal neurogenesis, and is essential for lamination but not cell differentiation. The results further imply that retinal lamination and cell differentiation are genetically separable processes. ^ Sonic hedgehog (shh) is expressed in retinal ganglion cells under the control of transcription factor Pou4f2 during retinal development. Previous studies identified a phylogenetically conserved region in the first intron of shh containing a Pou4f2 binding site. Transgenic reporter mice in which reporter gene expression was driven by this region showed that this element can direct gene expression specifically in the retina, but expression was not limited to the ganglion cells. From these data I hypothesized that this element is required for shh expression in the retina but is not sufficient for specific ganglion cell expression. To further test this hypothesis, I created a conditional allele by flanking this region with two loxP sites. Lines carrying this allele will be crossed with retinal-specific Cre lines to remove this element in the retina. My hypothesis predicts that alteration in shh expression and subsequent retinal defects will occur in the retinas of these mice. ^
Resumo:
Our study of the extended metal environment, particularly of the second shell, focuses in this paper on zinc sites. Key findings include: (i) The second shell of mononuclear zinc centers is generally more polar than hydrophobic and prominently features charged residues engaged in an abundance of hydrogen bonding with histidine ligands. Histidine–acidic or histidine–tyrosine clusters commonly overlap the environment of zinc ions. (ii) Histidine tautomeric metal bonding patterns in ligating zinc ions are mixed. For example, carboxypeptidase A, thermolysin, and sonic hedgehog possess the same ligand group (two histidines, one unibidentate acidic ligand, and a bound water), but their histidine tautomeric geometries markedly differ such that the carboxypeptidase A makes only Nδ1 contacts, thermolysin makes only Nɛ2 contacts, and sonic hedgehog uses one of each. Thus the presence of a similar ligand cohort does not necessarily imply the same topology or function at the active site. (iii) Two close histidine ligands HXmH, m ≤ 5, rarely both coordinate a single metal ion in the Nδ1 tautomeric conformation, presumably to avoid steric conflicts. Mononuclear zinc sites can be classified into six types depending on the ligand composition and geometry. Implications of the results are discussed in terms of divergent and convergent evolution.
Resumo:
Proper dorsal–ventral patterning in the developing central nervous system requires signals from both the dorsal and ventral portions of the neural tube. Data from multiple studies have demonstrated that bone morphogenetic proteins (BMPs) and Sonic hedgehog protein are secreted factors that regulate dorsal and ventral specification, respectively, within the caudal neural tube. In the developing rostral central nervous system Sonic hedgehog protein also participates in ventral regionalization; however, the roles of BMPs in the developing brain are less clear. We hypothesized that BMPs also play a role in dorsal specification of the vertebrate forebrain. To test our hypothesis we implanted beads soaked in recombinant BMP5 or BMP4 into the neural tube of the chicken forebrain. Experimental embryos showed a loss of the basal telencephalon that resulted in holoprosencephaly (a single cerebral hemisphere), cyclopia (a single midline eye), and loss of ventral midline structures. In situ hybridization using a panel of probes to genes expressed in the dorsal and ventral forebrain revealed the loss of ventral markers with the maintenance of dorsal markers. Furthermore, we found that the loss of the basal telencephalon was the result of excessive cell death and not a change in cell fates. These data provide evidence that BMP signaling participates in dorsal–ventral patterning of the developing brain in vivo, and disturbances in dorsal–ventral signaling result in specific malformations of the forebrain.
Resumo:
Teeth have been missing from birds (Aves) for at least 60 million years. However, in the chick oral cavity a rudiment forms that resembles the lamina stage of the mammalian molar tooth germ. We have addressed the molecular basis for this secondary loss of tooth formation in Aves by analyzing in chick embryos the status of molecular pathways known to regulate mouse tooth development. Similar to the mouse dental lamina, expression of Fgf8, Pitx2, Barx1, and Pax9 defines a potential chick odontogenic region. However, the expression of three molecules involved in tooth initiation, Bmp4, Msx1, and Msx2, are absent from the presumptive chick dental lamina. In chick mandibles, exogenous bone morphogenetic protein (BMP) induces Msx expression and together with fibroblast growth factor promotes the development of Sonic hedgehog expressing epithelial structures. Distinct epithelial appendages also were induced when chick mandibular epithelium was recombined with a tissue source of BMPs and fibroblast growth factors, chick skin mesenchyme. These results show that, although latent, the early signaling pathways involved in odontogenesis remain inducible in Aves and suggest that loss of odontogenic Bmp4 expression may be responsible for the early arrest of tooth development in living birds.
Resumo:
The patched gene (Ptc) is a member of the hedgehog signaling pathway which plays a central role in the development of many invertebrate and vertebrate tissues. In addition, Ptc and a number of other pathway members are mutated in some common human cancers. Patched is the receptor for the hedgehog ligand and in the mouse ablation of the Ptc gene leads to developmental defects and an embryonic lethal phenotype. Here we describe a conditional Ptc allele in mice which will have utility for the temporospatial ablation of Ptc function. genesis 36:158-161, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
Germline mutations of APC in patients with Turcot syndrome (colon cancer and medulloblastoma), was well as somatic mutations of APC, beta-catenin, and Axin in sporadic medulloblastomas (MBs) have shown the importance of WNT signaling in the pathogenesis of MB. A subset of children with MB have germline mutations of SUFU, a known inhibitor of Hedgehog signal transduction. A recent report suggested that murine Sufu can bind beta-catenin, export it from the nucleus, and thereby repress beta-catenin/T-cell factor (Tcf)-mediated transcription. We show that an MB-derived mutant of SUFU has lost the ability to decrease nuclear levels of beta-catenin, and cannot inhibit beta-catenin/Tcf-mediated transcription as compared to wild type SUFU. Our results suggest that loss of function of SUFU results in overactivity of both the Sonic Hedgehog, and the WNT signaling pathways, leading to excessive proliferation and failure to differentiate resulting in MB.
Resumo:
Endochondral bone is formed during an avascular period in an environment of low oxygen. Under these conditions, pluripotential mesenchymal stromal cells preferentially differentiate into chondrocytes and form cartilage. In this study, we investigated the hypothesis that oxygen tension modulates bone mesenchymal cell fate by altering the expression of genes that function to promote chondrogenesis. Microarray of RNA samples from ST2 cells revealed significant changes in 728 array elements (P < 0.01) in response to hypoxia. Real-time PCR on these RNA samples, and separate samples from C3H10T1/2 cells, revealed hypoxia-induced changes in the expression of additional genes known to be expressed by chondrocytes including Sox9 and its downstream targets aggrecan and Col2a. These changes were accompanied by the accumulation of mucopolysacharide as detected by alcian blue staining. To investigate the mechanisms responsible for upregulation of Sox9 by hypoxia, we determined the effect of hypoxia on HIF-1 alpha levels and Sox9 promoter activity in ST2 cells. Hypoxia increased nuclear accumulation of HIF-1 alpha and activated the Sox9 promoter. The ability of hypoxia to transactivate the Sox9 promoter was virtually abolished by deletion of HIF-1 alpha consensus sites within the proximal promoter. These findings suggest that hypoxia promotes the differentiation of mesenchymal cells along a chondrocyte pathway in part by activating Sox-9 via a HIF-1 alpha-dependent mechanism. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
From early in limb development the transcription factor Gli3 acts to define boundaries of gene expression along the anterior-posterior (AP) axis, establishing asymmetric patterns required to provide positional information. As limb development proceeds, posterior mesenchyme expression of Sonic hedgehog (Shh) regulates Gli3 transcription and post-translational processing to specify digit number and identity. The molecular cascades dependent on Gli3 at later stages of limb development, which link early patterning events with final digit morphogenesis, remain poorly characterised. By analysing the transcriptional consequences of loss of Gli3 in the anterior margin of the E11.5 and E12.5 limb bud in the polydactylous mouse mutant extra-toes (Gli3(Xt/Xt)), we have identified a number of known and novel transcripts dependent on Gli3 in the limb. In particular, we demonstrated that the genes encoding the paired box transcription factor Pax9, the Notch ligand Jagged1 and the cell surface receptor Cdo are dependent on Gli3 for correct expression in the anterior limb mesenchyme. Analysis of expression in compound Shh;Gli3 mutant mouse embryos and in both in vitro and in vivo Shh signaling assays, further defined the importance of Shh regulated processing of Gli3 in controlling gene expression. In particular Pax9 regulation by Shh and Gli3 was shown to be context dependent, with major differences between the limb and somite revealed by Shh bead implantation experiments in the chick. Jagged1 was shown to be induced by Shh in the chick limb and in a C3H10T1/2 cell based signaling assay, with Shh;Gli3 mutant analysis indicating that expression is dependent on Gli3 derepression. Our data have also revealed that perturbation of early patterning events within the Gli3(Xt/Xt), limb culminates in a specific delay of anterior chondrogenesis which is subsequently realised as extra digits. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mutations in the Hedgehog receptor, Patched 1 (Ptch1), have been linked to both familial and sporadic forms of basal cell carcinoma (BCC), leading to the hypothesis that loss of Ptch1 function is sufficient for tumor progression. By combining conditional knockout technology with the inducible activity of the Keratin6 promoter, we provide in vivo evidence that loss of Ptch1 function from the basal cell population of mouse skin is sufficient to induce rapid skin tumor formation, reminiscent of human BCC. Elimination of Ptch1 does not promote the nuclear translocation of beta-catenin and does not induce ectopic activation or expression of Notch pathway constituents. In the absence of Ptch1, however, a large proportion of basal cells exhibit nuclear accumulation of the cell cycle regulators cyclin D1 and B1. Collectively, our data suggest that Ptch1 likely functions as a tumor suppressor by inhibiting G(1)-S phase and G(2)-M phase cell cycle progression, and the rapid onset of tumor progression clearly indicates Ptch1 functions as a gatekeeper. In addition, we note the high frequency and rapid onset of tumors in this mouse model makes it an ideal system for testing therapeutic strategies, such as Patched pathway inhibitors.
Resumo:
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
1, During embryonic development, a diverse array of neurons and glia are generated at specific positions along the dorsoventral and rostro-caudal axes of the spinal cord from a common pool of precursor cells. 2. This cell type diversity can be distinguished by the spatially and temporally coordinated expression of several transcription factors that are also linked to cell type specification at a very early stage of spinal cord development. 3, Recent studies have started to uncover that the generation of cell type diversity in the developing spinal cord. Moreover, distinct cell types in the spinal cord appear to be determined by the spatially and temporally coordinated expression of transcription factors. 4. The expression of these factors also appears to be controlled by gradients of factors expressed by ventral and dorsal midline cells, namely Sonic hedgehog and members of the transforming growth factor-beta family. 5, Changes in the competence of precursor cells and local cell interactions may also play important roles in cell type specification within the developing spinal cord.