904 resultados para SOLUTION-PHASE APPROACH


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrooxidation of hydroxylamine, NH2OH, in 0.1 M phosphate buffer (PB, pH = 7) on Pt-, and Pd-modified Au electrodes prepared by galvanic displacement of underpotential deposited Cu, was investigated by electrochemical techniques and three and in situ vibrational probes, substrate-induced surface enhanced Raman scattering, SI-SERS, surface enhanced infrared absorption, SEIRAS, and Fourier transform infrared reflection-absorption, IRAS, spectroscopies. Analyses of the results obtained made it possible to identify at low overpotentials, solution phase (sol) and adsorbed (ads) nitric oxide, NO, as well as solution phase nitrous oxide, N2O. As the potential was increased, the peak(s) ascribed to NO(ads) gained in intensity and new features associated with NO2−(ads) and NO2−(sol) were clearly discerned. Further excursion toward higher potentials yielded an additional peak assigned to NO2(ads). This behavior is analogous to that found for bare Au electrodes in a potential region in which the metal is at least partially oxidized under otherwise the same experimental conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we investigate the solubility of a hard-sphere gas in a solvent modeled as an associating lattice gas. The solution phase diagram for solute at 5% is compared with the phase diagram of the original solute free model. Model properties are investigated both through Monte Carlo simulations and a cluster approximation. The model solubility is computed via simulations and is shown to exhibit a minimum as a function of temperature. The line of minimum solubility (TmS) coincides with the line of maximum density (TMD) for different solvent chemical potentials, in accordance with the literature on continuous realistic models and on the "cavity" picture. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4743635]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurde eine Methode entwickelt, Perylendiimidfarbstoffe mit Oligonucleotiden in der Lösung zu verknüpfen. Das Ziel der Arbeit war die nicht-kovalente Synthese von Perylendiimid-DNA- und Protein- supramolekularen Strukturen. Dabei werden die molekularen Erkennungseigenschaften von DNA und Proteinen zunutze gemacht. Insgesamt drei Themenbereiche wurden dabei betrachtet: 1. Synthese und Hybridisierung von symmetrischen und asymmetrischen Perylendiimid-bis(oligonucleotid)-konjugaten für die Bildung supramolekularer Strukturen, 2. Erzeugung von Oberflächenstrukturen auf der Basis von Streptavidin-Perylendiimid-Komplexen, 3. Synthese wasserlöslicher Rylenfarbstoffe für Anwendungen in biologischen Systemen. Zur Synthese und Hybridisierung von Perylendiimid-Oligonucleotid-Konjugaten wurde eine neue Idee verfolgt und erfolgreich realisiert. Dabei handelt es sich um die Synthese von Perylendiimid-DNA-Polymeren durch nicht-kovalente Bindungen. Die Basis des entwickelten Konzepts ist die Ausnutzung der Erkennungseigenschaften der DNA, um Perylendiimidmoleküle in eine lineare Makrostruktur zu organisieren, was sonst nur durch komplizierte chemische Polymersynthese zugänglich wäre. Die Selbstorganisation von zwei komplementären Perylendiimid-bis(oligonucleotid)-konjugaten (PODN1 und PODN2), die an der 5`-Position verknüpft sind, führte zu einem linearen Perylendiimid-DNA-Polymer in der Form von …ABABABAB…., das mit Hilfe von Gelelektrophorese charakterisiert wurde. Eindrucksvoll war auch die erfolgreiche Kopplung des hydrophoben Perylendiimids mit zwei unterschiedlichen Oligonucleotidsequenzen in der Lösung, um asymmetrische Perylendiimid-bis(oligonucleotid)-konjugate zu synthetisieren. Mit solchen asymmetrischen Konjugaten konnte die programmierbare Selbstorganisation der Perylendiimid-Oligonucleotide zu einer definierten Polymerstruktur realisiert werden. Die Synthese von PDI-(biotin)2 wurde vorgestellt. Durch die spezifische Erkennungseigenschaft zwischen Biotin und Streptavidin ist es möglich, eine Oberflächenstruktur zu bilden. Die Immobilisierungsexperimente zeigten, dass das PDI (biotin)2 Streptavidin erkennen und binden kann. Dabei konnte eine multischichtige Nanostruktur (5 Doppelschichten) auf einer Goldoberfläche.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work concerns with the study of debris flows and, in particular, with the related hazard in the Alpine Environment. During the last years several methodologies have been developed to evaluate hazard associated to such a complex phenomenon, whose velocity, impacting force and inappropriate temporal prediction are responsible of the related high hazard level. This research focuses its attention on the depositional phase of debris flows through the application of a numerical model (DFlowz), and on hazard evaluation related to watersheds morphometric, morphological and geological characterization. The main aims are to test the validity of DFlowz simulations and assess sources of errors in order to understand how the empirical uncertainties influence the predictions; on the other side the research concerns with the possibility of performing hazard analysis starting from the identification of susceptible debris flow catchments and definition of their activity level. 25 well documented debris flow events have been back analyzed with the model DFlowz (Berti and Simoni, 2007): derived form the implementation of the empirical relations between event volume and planimetric and cross section inundated areas, the code allows to delineate areas affected by an event by taking into account information about volume, preferential flow path and digital elevation model (DEM) of fan area. The analysis uses an objective methodology for evaluating the accuracy of the prediction and involve the calibration of the model based on factors describing the uncertainty associated to the semi empirical relationships. The general assumptions on which the model is based have been verified although the predictive capabilities are influenced by the uncertainties of the empirical scaling relationships, which have to be necessarily taken into account and depend mostly on errors concerning deposited volume estimation. In addition, in order to test prediction capabilities of physical-based models, some events have been simulated through the use of RAMMS (RApid Mass MovementS). The model, which has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf and the Swiss Federal Institute for Snow and Avalanche Research (SLF) takes into account a one-phase approach based on Voellmy rheology (Voellmy, 1955; Salm et al., 1990). The input file combines the total volume of the debris flow located in a release area with a mean depth. The model predicts the affected area, the maximum depth and the flow velocity in each cell of the input DTM. Relatively to hazard analysis related to watersheds characterization, the database collected by the Alto Adige Province represents an opportunity to examine debris-flow sediment dynamics at the regional scale and analyze lithologic controls. With the aim of advancing current understandings about debris flow, this study focuses on 82 events in order to characterize the topographic conditions associated with their initiation , transportation and deposition, seasonal patterns of occurrence and examine the role played by bedrock geology on sediment transfer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In my Ph.D research, a wet chemistry-based organic solution phase reduction method was developed, and was successfully applied in the preparation of a series of advanced electro-catalysts, including 0-dimensional (0-D) Pt, Pd, Au, and Pd-Ni nanoparticles (NPs), 1-D Pt-Fe nanowires (NWs) and 2-D Pd-Fe nanoleaves (NLs), with controlled size, shape, and morphology. These nanostructured catalysts have demonstrated unique electro-catalytic functions towards electricity production and biorenewable alcohol conversion. The molecular oxygen reduction reaction (ORR) is a long-standing scientific issue for fuel cells due to its sluggish kinetics and the poor catalyst durability. The activity and durability of an electro-catalyst is strongly related with its composition and structure. Based on this point, Pt-Fe NWs with a diameter of 2 - 3 nm were accurately prepared. They have demonstrated a high durability in sulfuric acid due to its 1-D structure, as well as a high ORR activity attributed to its tuned electronic structure. By substituting Pt with Pd using a similar synthesis route, Pd-Fe NLs were prepared and demonstrated a higher ORR activity than Pt and Pd NPs catalysts in the alkaline electrolyte. Recently, biomass-derived alcohols have attracted enormous attention as promising fuels (to replace H2) for low-temperature fuel cells. From this point of view, Pd-Ni NPs were prepared and demonstrated a high electro-catalytic activity towards ethanol oxidation. Comparing to ethanol, the biodiesel waste glycerol is more promising due to its low price and high reactivity. Glycerol (and crude glycerol) was successfully applied as the fuel in an Au-anode anion-exchange membrane fuel cell (AEMFC). By replacing Au with a more active Pt catalyst, simultaneous generation of both high power-density electricity and value-added chemicals (glycerate, tartronate, and mesoxalate) from glycerol was achieved in an AEMFC. To investigate the production of valuable chemicals from glycerol electro-oxidation, two anion-exchange membrane electro-catalytic reactors were designed. The research shows that the electro-oxidation product distribution is strongly dependent on the anode applied potential. Reaction pathways for the electro-oxidation of glycerol on Au/C catalyst have been elucidated: continuous oxidation of OH groups (to produce tartronate and mesoxalate) is predominant at lower potentials, while C-C cleavage (to produce glycolate) is the dominant reaction path at higher potentials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The solution phase parallel synthesis involving reactions of Baylis-Hillman products of 3-substituted-5-isoxazolecarbaldehydes with nucleophiles and their in vivo antithrombotic evaluations are described along with the results of in vitro platelet aggregation inhibition assay of a few compounds. Results of the detailed evaluation of one of the compounds as an inhibitor of platelet aggregation are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Entire issue (large pdf file) Articles include: The Role of Consistency and Diversity in Building Knowledge in Family Preservation. Debora J. Cavazos Dylla and Marianne Berry The Weekly Adjustment Indicators Checklist: An Application in the Child Welfare Field. Michael H. Epstein, Madhavi Jayanthi, Janet McKelvey, Deborah Holderness, Erin Frankenberry, Cassandra Lampkin, Molly McGrath, and Kari White Intensive Family Preservation Services: a Short History but a Long Past. Kellie B. Reed and Raymond S. Kirk Collaborative Conversations for Change: A Solution-Focused Approach to Family Centered Practice. Donald F. Fausel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five synthetic combinatorial libraries of 2,080 components each were screened as mixtures for inhibition of DNA binding to two transcription factors. Rapid, solution-phase synthesis coupled to a gel-shift assay led to the identification of two compounds active at a 5- to 10-μM concentration level. The likely mode of inhibition is intercalation between DNA base pairs. The efficient deconvolution through sublibrary synthesis augurs well for the use of large mixtures of small, nonpeptide molecules in biological screens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A form of two-dimensional (2D) vibrational spectroscopy, which uses two ultrafast IR laser pulses, is used to examine the structure of a cyclic penta-peptide in solution. Spectrally resolved cross peaks occur in the off-diagonal region of the 2D IR spectrum of the amide I region, analogous to those in 2D NMR spectroscopy. These cross peaks measure the coupling between the different amide groups in the structure. Their intensities and polarizations relate directly to the three-dimensional structure of the peptide. With the help of a model coupling Hamiltonian, supplemented by density functional calculations, the spectra of this penta-peptide can be regenerated from the known solution phase structure. This 2D-IR measurement, with an intrinsic time resolution of less than 1 ps, could be used in all time regimes of interest in biology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environments can directly influence the chemical reactivity, transport, and ecotoxicity of their constituent ions. In many cases, Pb-contaminated soils and sediments contain the minerals anglesite (PbSO4), cerussite (PbCO3), and various lead oxides (e.g., litharge, PbO) as well as Pb2+ adsorbed to Fe and Mn (hydr)oxides. Whereas adsorbed Pb can be comparatively inert, the lead oxides, sulfates, and carbonates are all highly soluble in acidic to circumneutral environments, and soil Pb in these forms can pose a significant environmental risk. In contrast, the lead phosphates [e.g., pyromorphite, Pb5(PO4)3Cl] are much less soluble and geochemically stable over a wide pH range. Application of soluble or solid-phase phosphates (i.e., apatites) to contaminated soils and sediments induces the dissolution of the “native” Pb minerals, the desorption of Pb adsorbed by hydrous metal oxides, and the subsequent formation of pyromorphites in situ. This process results in decreases in the chemical lability and bioavailability of the Pb without its removal from the contaminated media. This and analogous approaches may be useful strategies for remediating contaminated soils and sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Degradation of a synthetic tanning agent CNSF (a condensation product of 2-naphthatenesulfonic acid (2-NSA) and formaldehyde) by four activated sludges, two previously characterised bacterial strains, Arthrobacter sp. 2AC and Comamonas sp. 4BC, and the fungus Cunninghamella polymorpha, was studied in batch culture at 25 degrees C by determining the changes in the concentrations of CNSF and its component monomers and oligomers (n2-n11). The loss of individual oligomers was correlated with the length of the NSA-CH2 chain. Approximately 25% of the total CNSF was degraded (i.e. mineralised) by the microbes contained in the four activated sludges and by the two bacterial isolates but with different lag phases and at different overall rates. The decline in CNSF concentration was due almost entirely to the biodegradation of the monomers (34.3% of CNSF) and, in particular, 2-NSA (27% of CNSF). There was no change in the n2-n 11 components. The growth of C. polymorpha, on the other hand, arose from extracellular depolymerisation of CNSF oligomers and the biodegradation of the lower molecular mass products. Between 38% and 42% of total CNSF was degraded by C. polymorpha at 25 degrees C. The order of oligomer degradation was inversely related to degree of polymerisation. Eighty percent and 90% of the n4 and n5 and 100% oligomers n6-n11 were degraded after 120 h. At a higher temperature (37 degrees C) oligomers n4-n11 were degraded completely after 120 h. A combination of biodegradation (75%) and sorption to fungal biomass (25%) accounted for the measured loss of all oligomers from the solution phase. The CNSF degradation rates and the volume of fungal biomass produced (and therefore the extent of biosorption) were dependent on the presence of a second carbon source (both optimum at glucose 5 g/l). This is the first report that identifies and distinguishes between depolymerisation, sorption and biodegradation processes in the removal of CNSF and its component oligomers. The use of combinations of the depolymerising fungus C. polymorpha, and the monomer-degrading bacteria, Arthrobacter sp. 2AC and Comamonas sp. 4BC, have potential for wastewater treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clinically healthy mixed breed dogs (n = 20) were used to determine if a Tris (tromethamine)-buffered test solution, Otinide((R)) (Trademark of Dermcare-Vet Pty-Ltd, Australia), containing disodium ethylenediamine tetraacetic acid (EDTA; 1.21 g/L) and polyhexamethylene biguanide (PHMB; 0.22 g/L) caused ototoxicity or vestibular dysfunction. The dogs were randomly assigned to either a control group (group A, n = 10) receiving saline, or a treatment group (group B, n = 10) receiving the test solution. Phase 1 of the study consisted of applying 5.0 mL of saline to both ears of the control group (group A) and 5 mL of test solution to both ears of the test group (group B), for 21 days. A bilateral myringotomy was then performed on each dog under deep sedation. Phase 2 of the study then consisted of applying 2.0 mL of the saline to both ears of the control group (group A) and 2.0 mL of the test solution to both ears of the test group (group B), for 14 days. Throughout the study, dogs were examined for clinical health, and underwent otoscopic, vestibular and auditory examinations. The auditory examinations included brainstem auditory evoked potential (BAEP) threshold and supra-threshold assessments using both click and 8 kHz tone burst stimuli. The absence of vestibular signs and effects on the BAEP attributable to the test solution suggested the test solution could be applied safely to dogs, including those with a damaged tympanic membrane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature is an important parameter controlling protein crystal growth. A new temperature-screening system (Thermo-screen) is described consisting of a gradient thermocycler fitted with a special crystallization-plate adapter onto which a 192-well sitting-drop crystallization plate can be mounted (temperature range 277-372 K; maximum temperature gradient 20 K; interval precision 0.3 K). The system allows 16 different conditions to be monitored simultaneously over a range of 12 temperatures and is well suited to conduct wide (similar to 20 K) and fine (similar to 3 K) temperature-optimization screens. It can potentially aid in the determination of temperature phase diagrams and run more complex temperature-cycling experiments for seeding and crystal growth.