997 resultados para SNPs analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. METHODS AND FINDINGS: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m(2) higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10⁻²⁷). The BMI allele score was associated both with BMI (p = 6.30×10⁻⁶²) and 25(OH)D (-0.06% [95% CI -0.10 to -0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10⁻⁵⁷ for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: -4.2 [95% CI -7.1 to -1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores). CONCLUSIONS: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective:Observational studies have examined the link between vitamin D deficiency and obesity traits. Some studies have reported associations between vitamin D pathway genes such as VDR, GC and CYP27B1 with body mass index (BMI) and waist circumference (WC); however, the findings have been inconsistent. Therefore, we investigated the involvement of vitamin D metabolic pathway genes in obesity-related traits in a large population-based study.Methods:We undertook a comprehensive analysis between 100 tagging single nucleotide polymorphisms (tagSNPs) in genes encoding for DHCR7, CYP2R1, VDBP, CYP27B1, CYP27A1, CYP24A1, VDR and RXRG, and obesity traits in 5224 participants (aged 45 years) in the 1958 British birth cohort (1958BC). We further extended our analyses to investigate the associations between SNPs and obesity traits using the summary statistics from the GIANT (Genetic Investigation of Anthropometric Traits) consortium (n=123 865).Results:In the 1958BC (n=5224), after Bonferroni correction, none of the tagSNPs were associated with obesity traits except for one tagSNP from CYP24A1 that was associated with waist-hip ratio (WHR) (rs2296239, P=0.001). However, the CYP24A1 SNP was not associated with BMI-adjusted WHR (WHRadj) in the 1958BC (rs2296239, P=1.00) and GIANT results (n=123 865, P=0.18). There was also no evidence for an interaction between the tagSNPs and obesity on BMI, WC, WHR and WHRadj in the 1958BC. In the GIANT consortium, none of the tagSNPs were associated with obesity traits.Conclusions:Despite a very large study, our findings suggest that the vitamin D pathway genes are unlikely to have a major role in obesity-related traits in the general population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of crop specimens archived in herbaria and old seed collections represent valuable resources for the analysis of plant genetic diversity and crop domestication. The ability to extract ancient DNA (aDNA) from such samples has recently allowed molecular genetic investigations to be undertaken in ancient materials. While analyses of aDNA initially focused on the use of markers which occur in multiple copies such as the internal transcribed spacer region (ITS) within ribosomal DNA and those requiring amplification of short DNA regions of variable length such as simple sequence repeats (SSRs), emphasis is now moving towards the genotyping of single nucleotide polymorphisms (SNPs), traditionally undertaken in aDNA by Sanger sequencing. Here, using a panel of barley aDNA samples previously surveyed by Sanger sequencing for putative causative SNPs within the flowering-time gene PPD-H1, we assess the utility of the Kompetitive Allele Specific PCR (KASP) genotyping platform for aDNA analysis. We find KASP to out-perform Sanger sequencing in the genotyping of aDNA samples (78% versus 61% success, respectively), as well as being robust to contamination. The small template size (≥46 bp) and one-step, closed-tube amplification/genotyping process make this platform ideally suited to the genotypic analysis of aDNA, a process which is often hampered by template DNA degradation and sample cross-contamination. Such attributes, as well as its flexibility of use and relatively low cost, make KASP particularly relevant to the genetic analysis of aDNA samples. Furthermore, KASP provides a common platform for the genotyping and analysis of corresponding SNPs in ancient, landrace and modern plant materials. The extended haplotype analysis of PPD-H1 undertaken here (allelic variation at which is thought to be important for the spread of domestication and local adaptation) provides further resolution to the previously identified geographic cline of flowering-time allele distribution, illustrating how KASP can be used to aid genetic analyses of aDNA from plant species. We further demonstrate the utility of KASP by genotyping ten additional genetic markers diagnostic for morphological traits in barley, shedding light on the phenotypic traits, alleles and allele combinations present in these unviable ancient specimens, as well as their geographic distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LRRK2 was identified in 2004 as the causative protein product of the Parkinson’s disease locus designated PARK8. In the decade since then, genetic studies have revealed at least 6 dominant mutations in LRRK2 linked to Parkinson’s disease, alongside one associated with cancer. It is now well established that coding changes in LRRK2 are one of the most common causes of Parkinson’s. Genome-wide association studies (GWAs) have, more recently, reported single nucleotide polymorphisms (SNPs) around the LRRK2 locus to be associated with risk of developing sporadic Parkinson’s disease and inflammatory bowel disorder. The functional research that has followed these genetic breakthroughs has generated an extensive literature regarding LRRK2 pathophysiology; however, there is still no consensus as to the biological function of LRRK2. To provide insight into the aspects of cell biology that are consistently related to LRRK2 activity, we analysed the plethora of candidate LRRK2 interactors available through the BioGRID and IntAct data repositories. We then performed GO terms enrichment for the LRRK2 interactome. We found that, in two different enrichment portals, the LRRK2 interactome was associated with terms referring to transport, cellular organization, vesicles and the cytoskeleton. We also verified that 21 of the LRRK2 interactors are genetically linked to risk for Parkin- son’s disease or inflammatory bowel disorder. The implications of these findings are discussed, with particular regard to potential novel areas of investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodium falciparum, the causative agent of human malaria, invades host erythrocytes using several proteins on the surface of the invasive merozoite, which have been proposed as potential vaccine candidates. Members of the multi-gene PfRh family are surface antigens that have been shown to play a central role in directing merozoites to alternative erythrocyte receptors for invasion. Recently, we identified a large structural polymorphism, a 0.58 Kb deletion, in the C-terminal region of the PfRh2b gene, present at a high frequency in parasite populations from Senegal. We hypothesize that this region is a target of humoral immunity. Here, by analyzing 371 P. falciparum isolates we show that this major allele is present at varying frequencies in different populations within Senegal, Africa, and throughout the world. For allelic dimorphisms in the asexual stage antigens, Msp-2 and EBA-175, we find minimal geographic differentiation among parasite populations from Senegal and other African localities, suggesting extensive gene flow among these populations and/or immune-mediated frequency-dependent balancing selection. In contrast, we observe a higher level of inter-population divergence (as measured by F(st)) for the PfRh2b deletion, similar to that observed for SNPs from the sexual stage Pfs45/48 loci, which is postulated to be under directional selection. We confirm that the region containing the PfRh2b polymorphism is a target of humoral immune responses by demonstrating antibody reactivity of endemic sera. Our analysis of inter-population divergence suggests that in contrast to the large allelic dimorphisms in EBA-175 and Msp-2, the presence or absence of the large PfRh2b deletion may not elicit frequency-dependent immune selection, but may be under positive immune selection, having important implications for the development of these proteins as vaccine candidates. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leprosy is a complex infectious disease influenced by genetic and environmental factors. The genetic contributing factors are considered heterogeneous and several genes have been consistently associated with susceptibility like PARK2, tumor necrosis factor (TNF), lymphotoxin-alpha (LTA) and vitamin-D receptor (VDR). Here, we combined a case-control study (374 patients and 380 controls), with meta-analysis (5 studies; 2702 individuals) and biological study to test the epidemiological and physiological relevance of the interleukin-10 (IL-10) genetic markers in leprosy. We observed that the -819T allele is associated with leprosy susceptibility either in the case-control or in the meta-analysis studies. Haplotypes combining promoter single-nucleotide polymorphisms also implicated a haplotype carrying the -819T allele in leprosy susceptibility (odds ratio (OR) = 1.40; P = 0.01). Finally, we tested IL-10 production in peripheral blood mononuclear cells stimulated with Mycobacterium leprae antigens and found that -819T carriers produced lower levels of IL-10 when compared with noncarriers. Taken together, these data suggest that low levels of IL-10 during the disease outcome can drive patients to a chronic and unprotective response that culminates with leprosy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lewis blood group system involves two major antigens, Leª and Leb. Their antigenic determinants are not primary gene products but are synthesized by the transfer of sugar subunits to a precursory chain by a specific enzyme which is the product of the FUT3 gene (Lewis gene). The presence of three FUT3 gene single nucleotide polymorphisms (SNPs) (59T > G; 508G > A and 1067T > A) was related to the Lewis phenotype of erythrocytes from 185 individuals of Japanese ancestry living in the town of Tomé-Açu in the Brazilian Amazon region. This relationship was detected using a serological hemagglutination test and the Dot-ELISA assay along with the molecular technique PCR-RFLP. We found that the three SNPs investigated in this study only accounted for a proportion of the Lewis-negative phenotype of the erythrocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lewis blood group system involves two major antigens, Lea and Leb. Their antigenic determinants are not primary gene products but are synthesized by the transfer of sugar subunits to a precursory chain by a specific enzyme which is the product of the FUT3 gene (Lewis gene). The presence of three FUT3 gene single nucleotide polymorphisms (SNPs) (59T > G; 508G > A and 1067T > A) was related to the Lewis phenotype of erythrocytes from 185 individuals of Japanese ancestry living in the town of Tomé-Açu in the Brazilian Amazon region. This relationship was detected using a serological hemagglutination test and the Dot-ELISA assay along with the molecular technique PCR-RFLP. We found that the three SNPs investigated in this study only accounted for a proportion of the Lewis-negative phenotype of the erythrocytes.