965 resultados para SNP- polymorphism
Resumo:
The aim of this study was to obtain information about genetic diversity and make some inferences about the relationship of 27 strains of Xylella fastidiosa from different hosts and distinct geographical areas. Single-nucleotide polymorphism (SNP) molecular markers were identified in DNA sequences from 16 distinct regions of the genome of 24 strains of X. fastidiosa from coffee and citrus plants. Among the Brazilian strains, coffee-dependent strains have a greater number of SNPs (10 to 24 SNPs) than the citrus-based strains (2 to 12 SNPs); all the strains were compared with the sequenced strain 9a5c. The identified SNP markers were able to distinguish, for the first time, strains from citrus plants and coffee and showed that strains from coffee present higher genetic diversity than the others. These markers also have proven to be efficient for discriminating strains from the same host obtained from different geographic regions. X. fastidiosa, the causal agent of citrus variegated chlorosis, possesses genetic diversity, and the SNP markers were highly efficient for discriminating genetically close organisms.
Resumo:
Leprosy is a chronic infectious disease caused by Mycobacterium leprae, a low virulence mycobacterium, and the outcome of disease is dependent on the host genetics for either susceptibility per se or severity. The IFNG gene codes for interferon-gamma (IFN-gamma), a cytokine that plays a key role in host defense against intracellular pathogens. Indeed, single nucleotide polymorphisms (SNPs) in IFNG have been evaluated in several genetic epidemiological studies, and the SNP +874T > A, the +874T allele, more specifically, has been associated with protection against infectious diseases, especially tuberculosis. Here, we evaluated the association of the IFNG locus with leprosy enrolling 2,125 Brazilian subjects. First, we conducted a case-control study with subjects recruited from the state of So Paulo, using the +874 T > A (rs2430561), +2109 A > G (rs1861494) and rs2069727 SNPs. Then, a second study including 1,370 individuals from Rio de Janeiro was conducted. Results of the case-control studies have shown a protective effect for +874T carriers (OR(adjusted) = 0.75; p = 0.005 for both studies combined), which was corroborated when these studies were compared with literature data. No association was found between the SNP +874T > A and the quantitative Mitsuda response. Nevertheless, the spontaneous IFN-gamma release by peripheral blood mononuclear cells was higher among +874T carriers. The results shown here along with a previously reported meta-analysis of tuberculosis studies indicate that the SNP +874T > A plays a role in resistance to mycobacterial diseases.
Resumo:
Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection. © 2013 Petersen et al.
Resumo:
Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) [1] to be typed using SNaPShotTM (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) [1] was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010) [1]. All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. © 2013 Elsevier B.V.
Resumo:
The gene responsible for coding the leptin hormone has been associated with productive and reproductive traits in cattle. In dairy cattle, different polymorphisms found in the leptin gene have been associated with several traits of economic interest, such as energy balance, milk yield and composition, live weight, fertility and dry matter consumption. The aim of this study was to detect genetic variability in the leptin gene of buffaloes and to test possible associations with milk yield, fat and protein percentages, age at first calving and first calving interval. Three genotypes (AA, AG and GG) were identified by polymerase chain reaction-restriction fragment length polymorphism, which presented genotypic frequencies of 0.30, 0.54 and 0.16, respectively. The allele frequencies were 0.57 for the A allele and 0.43 for the G allele. No significant effects were found in the present study, but there is an indicative that leptin gene affects lipid metabolism. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
O Meduloblastoma é a neoplasia encefálica mais comum na infância, correspondendo a taxas de 16 a 25% de todos os tumores encefálicos em menores de 19 anos e 30-40% de todos os tumores da fossa posterior. Para investigar o papel do polimorfismo de base única (SNP) TP53 Arg72Pro sobre o risco de desenvolvimento, prognóstico e resposta a terapêutica adjuvante em Meduloblastoma, foi realizado um estudo caso-controle com 122 pacientes e 122 controles saudáveis do Brasil. Em comparação com Arg/Arg, que é o genótipo mais comum na população em estudo, tanto o genótipo Arg/Pro e Pro/Pro não influenciaram o risco de desenvolvimento de Meduloblastoma (OR = 1,36 e P = 0,339 para o genótipo Arg/Pro; OR = 1,50 e P = 0,389 para o genótipo Pro/Pro). Com relação ao prognóstico, a sobrevida livre de doença não foi significativamente diferente entre os genótipos SNP TP53 Arg72Pro (P> 0,05), porém o genótipo menos freqüente, Pro/Pro, foi associado a uma menor sobrevida global dos pacientes com Meduloblastoma (P = 0,021 ). Estes dados sugerem que embora não haja nenhuma associação entre o SNP TP53 Arg72Pro e o risco de desenvolvimento de Meduloblastoma, o genótipo Pro/Pro está associado a uma menor sobrevida global dos pacientes submetidos a terapia adjuvante. No entanto, devido à composição interétnica da população brasileira, futuros estudos envolvendo populações maiores e de outras partes do mundo serão essenciais para uma conclusão definitiva da função do SNP TP53 Arg72Pro.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To assist cattle producers transition from microsatellite (MS) to single nucleotide polymorphism (SNP) genotyping for parental verification we previously devised an effective and inexpensive method to impute MS alleles from SNP haplotypes. While the reported method was verified with only a limited data set (N = 479) from Brown Swiss, Guernsey, Holstein, and Jersey cattle, some of the MS-SNP haplotype associations were concordant across these phylogenetically diverse breeds. This implied that some haplotypes predate modern breed formation and remain in strong linkage disequilibrium. To expand the utility of MS allele imputation across breeds, MS and SNP data from more than 8000 animals representing 39 breeds (Bos taurus and B. indicus) were used to predict 9410 SNP haplotypes, incorporating an average of 73 SNPs per haplotype, for which alleles from 12 MS markers could be accurately be imputed. Approximately 25% of the MS-SNP haplotypes were present in multiple breeds (N = 2 to 36 breeds). These shared haplotypes allowed for MS imputation in breeds that were not represented in the reference population with only a small increase in Mendelian inheritance inconsistancies. Our reported reference haplotypes can be used for any cattle breed and the reported methods can be applied to any species to aid the transition from MS to SNP genetic markers. While ~91% of the animals with imputed alleles for 12 MS markers had ≤1 Mendelian inheritance conflicts with their parents' reported MS genotypes, this figure was 96% for our reference animals, indicating potential errors in the reported MS genotypes. The workflow we suggest autocorrects for genotyping errors and rare haplotypes, by MS genotyping animals whose imputed MS alleles fail parentage verification, and then incorporating those animals into the reference dataset.
Resumo:
Background: The Interleukin 28B (IL28B) rs12979860 polymorphisms was recently reported to be associated with the human T-cell leukemia virus type 1 (HTLV-1) proviral load (PvL) and the development of the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Methods: In an attempt to examine this hypothesis, we assessed the association of the rs12979860 genotypes with HTLV-1 PvL levels and clinical status in 112 unrelated Brazilian subjects (81 HTLV-1 asymptomatic carriers, 24 individuals with HAM/TSP and 7 with Adult T cell Leukemia/Lymphoma (ATLL)). Results: All 112 samples were successfully genotyped and their PvLs compared. Neither the homozygote TT nor the heterozygote CT mutations nor the combination genotypes (TT/CT) were associated with a greater PvL. We also observed no significant difference in allele distribution between asymptomatic carriers and patients with HTLV-1 associated HAM/TSP. Conclusions: Our study failed to support the previously reported positive association between the IL28B rs12979860 polymorphisms and an increased risk of developing HAM/TSP in the Brazilian population.
Resumo:
SERA5 is regarded as a promising malaria vaccine candidate of the most virulent human malaria parasite Plasmodium falciparum. SERA5 is a 120 kDa abundantly expressed blood-stage protein containing a papain-like protease. Since substantial polymorphism in blood-stage vaccine candidates may potentially limit their efficacy, it is imperative to fully investigate polymorphism of the SERA5 gene (sera5). In this study, we performed evolutionary and population genetic analysis of sera5. The level of inter-species divergence (kS = 0.076) between P. falciparum and Plasmodium reichenowi, a closely related chimpanzee malaria parasite is comparable to that of housekeeping protein genes. A signature of purifying selection was detected in the proenzyme and enzyme domains. Analysis of 445 near full-length P. falciparum sera5 sequences from nine countries in Africa, Southeast Asia, Oceania and South America revealed extensive variations in the number of octamer repeat (OR) and serine repeat (SR) regions as well as substantial level of single nucleotide polymorphism (SNP) in non-repeat regions (2562 bp). Remarkably, a 14 amino acid sequence of SERA5 (amino acids 59-72) that is known to be the in vitro target of parasite growth inhibitory antibodies was found to be perfectly conserved in all 445 worldwide isolates of P. falciparum evaluated. Unlike other major vaccine target antigen genes such as merozoite surface protein-1, apical membrane antigen-1 or circumsporozoite protein, no strong evidence for positive selection was detected for SNPs in the non-repeat regions of sera5. A biased geographical distribution was observed in SNPs as well as in the haplotypes of the sera5 OR and SR regions. In Africa, OR- and SR-haplotypes with low frequency (<5%) and SNPs with minor allele frequency (<5%) were abundant and were mostly continent-specific. Consistently, significant genetic differentiation, assessed by the Wright's fixation index (FST) of inter-population variance in allele frequencies, was detected for SNPs and both OR- and SR-haplotypes among almost all parasite populations. The exception was parasite populations between Tanzania and Ghana, suggesting frequent gene flow in Africa. The present study points to the importance of investigating whether biased geographical distribution for SNPs and repeat variants in the OR and SR regions affect the reactivity of human serum antibodies to variants. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A functional SNP (rs9347683) in the promoter region of the parkin gene had been implicated as a risk factor in older Parkinson's disease (PD) patients.
Resumo:
The single nucleotide polymorphism (SNP) rs2542151 within the gene locus region encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with Crohn's disease (CD), ulcerative colitis (UC), type-I diabetes, and rheumatoid arthritis. We have previously shown that PTPN2 regulates mitogen-activated protein kinase (MAPK) signaling and cytokine secretion in human THP-1 monocytes and intestinal epithelial cells (IEC). Here, we studied whether intronic PTPN2 SNP rs1893217 regulates immune responses to the nucleotide-oligomerization domain 2 (NOD2) ligand, muramyl-dipeptide (MDP).
Resumo:
The D216H single-nucleotide polymorphism (SNP) (rs1801968) in DYT1 exon 4 has been suggested to be a genetic modifier in primary dystonia.