978 resultados para SINGLET OXYGEN GENERATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of rho = 1.3 +/- 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the photophysical and photochemical characterization of new photo- and redox-active supramolecular systems. In particular we studied two different classes of compounds: metal complexes and dendrimers. Two different families of bis-cyclometalated neutral Ir(III) complexes are presented and their photophysical properties are discussed. The first family of complexes contains two 2-phenylpyridyl (ppy) or 2-(4,6-difluorophenyl)pyridyl (F2ppy) cyclometalated ligands and an ancillary ligand constituted by a phenol-oxazoline (phox), which can be substituted in the third position with a fluorine group (Fphox). In the second part of this study, we present another family of bis-cyclometalated Ir(III) complexes in which the ancillary ligand could be a chiral or an achiral bis-oxazoline (box). We report on their structural, electrochemical, photophysical, and photochemical properties. Complexes containing phox and Fphox ancillary ligands show blue luminescence with very high quantum yield, while complexes with box ligands do not show particularly interesting photophysical properties. Surprisingly these complexes give an unexpected photoreaction when irradiated with UV light in presence of dioxygen. This photoreaction originates a stable, strong blue emitting and particularly interesting photoproduct. Three successive generations of a family of polyethyleneglycol (PEG)-coated Pd(II) tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes are presented, and their ability to sensitize singlet oxygen and inflict cellular photodamage are discussed. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency, that approximate the unity, in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. Nevertheless, when compared against a commonly used singlet oxygen sensitizer, as Photofrin, the phosphorescent probes were found to be non-phototoxic. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. The results suggest that protected phosphorescent probes can be safely used for oxygen measurements in biological systems in vivo. A new family of two photoswitchable (G0(Azo) and G1(Azo)) dendrimers with an azobenzene core, two cyclam units as coordination sites for metal ions, and luminescent naphthalene units at the periphery have been characterized and their coordination abilities have been studied. Because of their proximity, the various functional groups of the dendrimer may interact, so that the properties of the dendrimers are different from those exhibited by the separated functional units. Both the naphthalene fluorescence and the azobenzene photoisomerization can be observed in the dendrimer, but it has been shown that (i) the fluorescent excited state of the naphthalene units is substantially quenched by excimer and exciplex formation and by energy transfer to the azobenzene units, and (ii) in the latter case the fluorescence quenching is accompanied by the photosensitized isomerization of the trans → cis, and, with higher efficiency, the cis → trans reaction. Complexation of these dendrimers, both trans and cis isomers, with Zn(II) ions shows that complexes of 1:1 and 2:1 metal per dendrimer stoichiometry are formed showing different photophysical and photochemical properties compared to the corresponding free ligands. Practically unitary efficiency of the sensitized isomerization of trans → cis and cis → trans reaction is observed, as well as a slight increase in the naphthalene monomer emission. These results are consistent with the coordination of the cyclam amine units with Zn(II), which prevents exciplex formation. No indication of a concomitant coordination of both cyclam to a single metal ion has been obtained both for trans and cis isomer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments. Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ∼ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol. The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe 3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural dissolved organic matter (DOM) is the major absorber of sunlight in most natural waters and a critical component of carbon cycling in aquatic systems. The combined effect of light absorbance properties and related photo-production of reactive species are essential in determining the reactivity of DOM. Optical properties and in particular excitation–emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) have been used increasingly to track sources and fate of DOM. Here we describe studies conducted in water from two estuarine systems in the Florida Everglades, with a salinity gradient of 2 to 37 and dissolved organic carbon concentrations from 19.3 to 5.74 mg C L−1, aimed at assessing how the quantity and quality of DOM is coupled to the formation rates and steady-state concentrations of reactive species including singlet oxygen, hydroxyl radical, and the triplet excited state of DOM. These species were related to optical properties and PARAFAC components of the DOM. The formation rate and steady-state concentration of the carbonate radical was calculated in all samples. The data suggests that formation rates, particularly for singlet oxygen and hydroxyl radicals, are strongly coupled to the abundance of terrestrial humic-like substances. A decrease in singlet oxygen, hydroxyl radical, and carbonate radical formation rates and steady-state concentration along the estuarine salinity gradient was observed as the relative concentration of terrestrial humic-like DOM decreased due to mixing with microbial humic-like and protein-like DOM components, while the formation rate of triplet excited-state DOM did not change. Fluorescent DOM was also found to be more tightly coupled to reactive species generation than chromophoric DOM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ternary L-glutamine (L-gln) copper(II) complexes [Cu(L-gln)(B)(H2O)](X) (B = 2,2'-bipyridine (bpy), X = 0.5SO(4)(2-), 1; B = 1,10-phenanthroline (phen), X = ClO4-, 2) and [Cu(L-gln)(dpq)(ClO4)] (3) (dpq, dipyridoquinoxaline) are prepared and characterized by physicochemical methods. The DNA binding and cleavage activity of the complexes have been studied. Complexes 1-3 are structurally characterized by X-ray crystallography. The complexes show distorted square pyramidal (4+1) CuN3O2 coordination geometry in which the N,O-donor amino acid and the N, N-donor heterocyclic base bind at the basal plane with a H2O or perchlorate as the axial ligand. The crystal structures of the complexes exhibit chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The complexes display a d-d electronic band in the range of 610-630 nm in aqueous-dimethylformamide (DMF) solution (9:1 v/v). The quasireversible cyclic voltammetric response observed near -0.1 V versus SCE in DMF-TBAP is assignable to the Cu(II)/Cu(I) couple. The binding affinity of the complexes to calf thymus (CT) DNA follows the order: 3 (dpq) > 2 (phen) >> 1 (bpy). Complexes 2 and 3 show DNA cleavage activity in dark in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent via a mechanistic pathway forming hydroxyl radical as the reactive species. The dpq complex 3 shows efficient photoinduced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency of the DNA minor groove binding complexes follows the order:3 > 2 >> 1. The dpq complex exhibits photocleavage of DNA on irradiation with visible light of 647.1 nm. Mechanistic data on the photo-induced DNA cleavage reactions reveal the involvement of singlet oxygen (O-1(2)) as the reactive species in a type-II pathway. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Copper(II) complexes [Cu(L-arg)(2)](NO3)(2) (1) and [Cu(L-arg)(B)Cl]Cl (2-5), where B is a heterocyclic base, namely, 2,2'-bipyridine (bpy, 2), 1,10-phenanthroline (phen, 3), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 4), and dipyrido[3,2-a:2',3'-c)phenazine (dppz, 5), are prepared and their DNA binding and photoinduced DNA cleavage activity studied. Ternary complex 3, structurally characterized using X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor L-arginine and N,N-donor 1,10-phenanthroline form the basal plane with one chloride at the elongated axial site. The complex has a pendant cationic guanidinium moiety. The one-electron paramagnetic complexes display a metal-centered d-d band in the range of 590-690 nm in aqueous DMF They show quasireversible cyclic voltammetric response due to the Cu(II)/Cu(I) couple in the range of -0.1 to -0.3 V versus a saturated calomel electrode in a DMF-Tris HCl buffer (pH 7.2). The DNA binding propensity of the complexes is studied using various techniques. Copper(II) bis-arginate 1 mimics the minor groove binder netropsin by showing preferential binding to the AT-rich sequence of double-strand (ds) DNA. DNA binding study using calf thymus DNA gives an order: 5 (L-arg-dppz) >= 1 (biS-L-arg) > 4 (L-arg-dpq) > 3 (L-arg-phen) >> 2 (L-arg-bpy). Molecular docking calculations reveal that the complexes bind through extensive hydrogen bonding and electrostatic interactions with ds-DNA. The complexes cleave supercoiled pUC19 DNA in the presence of 3-mercaptopropionic acid as a reducing agent forming hydroxyl ((OH)-O-center dot) radicals. The complexes show oxidative photoinduced DNA cleavage activity in UV-A light of 365 nm and red light of 647.1 nm (Ar-Kr mixed-gas-ion laser) in a metal-assisted photoexcitation process forming singlet oxygen (O-1(2)) species in a type-II pathway. All of the complexes, barring complex 2, show efficient DNA photocleavage activity. Complexes 4 and 5 exhibit significant double-strand breaks of DNA in red light of 647.1 nm due to the presence of two photosensitizers, namely, L-arginine and dpq or dppz in the molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidation of diaryl, aryl alkyl, and dialkyl thioketones by singlet oxygen generated via self-sensitization and other independent methods yielded the corresponding ketone and sulfine in varying amounts. A zwitterionic/ diradical intermediate arising out of the primary interaction of singlet oxygen with the thiocarbonyl chromophore is believed to be the common intermediate for the ketone and sulfine. While closure of the zwitterion/diradical to give 1,2,3-dioxathietane would lead to the ketone, competing oxygen elimination is believed to lead to the sulfine. This partitioning is governed by steric and electronic factors operating on the zwitterionic/diradical intermediate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidation of diaryl, aryl alkyl, and dialkyl thioketones by singlet oxygen generated via self-sensitization and other independent methods yielded the corresponding ketone and sulfine in varying amounts. A zwitterionic/ diradical intermediate arising out of the primary interaction of singlet oxygen with the thiocarbonyl chromophore is believed to be the common intermediate for the ketone and sulfine. While closure of the zwitterion/diradical to give 1,2,3-dioxathietane would lead to the ketone, competing oxygen elimination is believed to lead to the sulfine. This partitioning is governed by steric and electronic factors operating on the zwitterionic/diradical intermediate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The triplets of four cyclic enethiones, including thiocoumarin, have been investigated by nanosecond laser flash photolysis. Data are presented for transient spectra and kinetics associated with triplets, quantum yields of intersystem crossing and singlet oxygen photosensitization. The quenching of the thiocoumarin triplet (A:, = 485 nm, E:,, = 8.8 x lo3 dm3 mol-' cm-'in benzene) by several olefins, amines and hydrogen donors occurs with rate constants of 107-5 x lo9 dm3 mol-' s-'; the lower limits of quantum yields ( c#+~) for the related photoreactions, estimated from ground-state depletion, are generally small (0.0-0.1 1 in benzene, except for good hydrogen donors, namely, p-methoxythiophenol and tri-n-butylstannane) . The radical anion of thiocoumarin (A,,, = 405-435 nm) is formed in two stages upon triplet quenching by triethylamine in acetonitrile; the fast component is the result of direct electron transfer to the triplet and the slower component is assigned to secondary photoreduction of the thione ground state by the a-aminoalkyl radical derived from the triethylamine radical-cation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Singlet-oxygen reaction with dialkyl, aryl alkyl, and diaryl thioketones is found to give the corresponding sulphines and ketones in proportions depending on the nature of the thioketone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes [VO(L)(B)]Cl-2 (1-3), where L is bis(2-benzimidazolylmethyl)amine and B is 1,10-phenanthroline(phen),dipyrido[3,2-d:2',3'-f]quinoxaline(dpq) or dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been prepared, characterized, and their photo-induced DNA and protein cleavage activity studied. The photocytotoxicity of complex 3 has been studied using adenocarcinoma A549 cells, The phen complex 1, structurally characterized by single-crystal X-ray crystallography, shows the presence of a vanadyl group in six-coordinate VON5 coordination geometry. The ligands L and phen display tridentate and bidentate N-donor chelating binding modes, respectively. The complexes exhibit a d-d band near 740 nm in 15% DMF-Tris-HCl buffer (pH 7.2). The phen and dpq complexes display an irreversible cathodic cyclic voltammetric response near -0.8 V in 20% DMF-Tris-HCl buffer having 0.1 M KCl as supporting electrolyte. The dppz complex 3 exhibits a quasi-reversible voltammogram near -0.6 V (vs SCE) that is assignable to the V(IV)-V(III)couple. The complexes bind to calf thymus DNA giving binding constant values in the range of 6.6 x 10(4)-2.9 x 10(5) M-1. The binding site size, thermal melting and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor ``chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A light of 365 nm via a mechanistic pathway that involves formation of both singlet oxygen and hydroxyl radicals. The complexes show significant photocleavage of DNA in near-IR light (>750 nm) via hydroxyl radical pathway. Among the three complexes, the dppz complex 3 shows significant BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via hydroxyl radical pathway. The dppz complex 3 also exhibits photocytotoxicity in non-small cell lung carcinoma/human lung adenocarcinoma A549 cells giving IC50 value of 17 mu M in visible light(IC50 = 175 mu M in dark).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes [VOCl(B)(2)]Cl (1-3) of phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3), have been prepared, characterized and their DNA and protein binding, photo-induced DNA and protein cleavage activity andm photocytotoxicity have been studied. Complex 2, structurally characterized by X-ray crystallography, shows the presence of a vanadyl group in VOClN4 coordination geometry. The dpq ligand displays a chelating mode of binding with a N-donor site trans to the oxo-group. The chloride ligand is cis to the oxo-group. The one-electron paramagnetic complexes show a d-d band near 715 nm in 15% DMF-Tris-HCl buffer. The complexes are redox active exhibiting a V(IV)/V(III) redox couple within -0.5 to -0.7 V vs. SCE in 20% DMF-Tris-HCl/0.1 M KCl. The complexes bind to calf thymus (CT) DNA in the order: 3 (dppz) > 2 (dpq) > 1 (phen). The binding data reveal the groove and/or partial intercalative DNA binding nature of the complexes. The complexes show chemical nuclease'' activity in the dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide via a hydroxyl radical pathway. The dpq and dppz complexes are efficient photocleavers of DNA in UV-A light of 365 nm forming reactive singlet oxygen (O-1(2)) and hydroxyl radical ((OH)-O-center dot) species. Complexes 2 and 3 also show DNA cleavage activity in red light (> 750 nm) by an exclusive (OH)-O-center dot pathway. The complexes display a binding propensity to bovine serum albumin (BSA) protein giving K-BSA values in the range of 7.1 x 10(4)-1.8 x 10(5) M-1. The dppz complex 3 shows BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via (OH)-O-center dot pathway. The dppz complex 3 exhibits significant PDT effect in human cervical cancer HeLa cells giving IC50 values of 1.0 mu M and 12.0 mu M in UV-A and visible light, respectively (IC50 = > 100 mu M in the dark).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cobalt(III) complexes [Co(pnt)(B)(2)](NO3)(2) (1-3) of pyridine-2-thiol (pnt) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2',3'-c] phenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The crystal structure of 1a as mixed ClO4- and PF6- salt of 1 shows a (CoN5S)-N-III coordination geometry in which the pnt and phen showed N,S- and N,N-donor binding modes, respectively. The complexes exhibit Co(III)/Co(II) redox couple near -0.3 V (vs. SCE) in 20% DMF-Tris-HCl buffer having 0.1 M TBAP. The complexes show binding propensity to calf thymus DNA giving K-b values within 2.2 x 10(4)-7.3 x 10(5) M-1. Thermal melting and viscosity data suggest DNA surface and/or groove binding of the complexes. The complexes show significant anaerobic DNA cleavage activity in red light under argon atmosphere possibly involving sulfide anion radical or thiyl radical species. The DNA cleavage reaction under aerobic medium in red light is found to involve both singlet oxygen and hydroxyl radical pathways. The dppz complex 3 shows non-specific BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via both hydroxyl and singlet oxygen pathways. The dppz complex 3 exhibits photocytotoxicity in HeLa cervical cancer cells giving IC50 values of 767 nM and 19.38 mu M in UV-A light of 365 nm and in the dark, respectively. A significant reduction of the dark toxicity of the dppz base (IC50 = 8.34 mu M in dark) is observed on binding to the cobalt(III) center.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ternary copper(II) complexes [Cu(L-trp)(B)(H2O)](NO3) ( 1–3) and [Cu(L-phe)(B)(H2O)](NO3) ( 4–6) of L-tryptophan (L-trp) and L-phenylalanine (L-phe) having phenanthroline bases (B), viz. 1,10-phenanthroline (phen, 1 and 4), dipyrido[3,2-d:2,3-f]quinoxaline (dpq, 2 and 5) and dipyrido[3,2-a:2,3-c]phenazine (dppz, 3 and 6), were prepared and characterized by physico-chemical techniques. Complexes 3 and 6 were structurally characterized by X-ray crystallography and show the presence of a square pyramidal (4 + 1) CuN3O2 coordination geometry in which the N,O-donor amino acid (L-trp or L-phe) and N,N-donor phenanthroline base bind at the equatorial plane with an aqua ligand coordinated at the elongated axial site. Complex 3 shows significant distortion from the square pyramidal geometry and a strong intramolecular – stacking interaction between the pendant indole ring of L-trp and the planar dppz aromatic moiety. All the complexes display good binding propensity to the calf thymus DNA giving an order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding constant (Kb) values are in the range of 2.1 × 104–1.1 × 106 mol-1 with the binding site size (s) values of 0.17–0.63. The phen and dpq complexes are minor groove binders while the dppz analogues bind at the DNA major groove. Theoretical DNA docking studies on 2 and 3 show the close proximity of two photosensitizers, viz. the indole moiety of L-trp and the quinoxaline/phenazine of the dpq/dppz bases, to the complementary DNA strands. Complexes 2 and 3 show oxidative DNA double strand breaks (dsb) of supercoiled (SC) DNA forming a significant quantity of linear DNA along with the nicked circular (NC) form on photoexposure to UV-A light of 365 nm and red light of 647.1 nm (Ar–Kr laser). Complexes 1, 5 and 6 show only single strand breaks (ssb) forming NC DNA. The red light induced DNA cleavage involves metal-assisted photosensitization of L-trp and dpq/dppz base resulting in the formation of a reactive singlet oxygen (1O2) species.