909 resultados para SHORT-CONTACT TIMES
Resumo:
Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected.
Resumo:
We introduce a general scheme for sequential one-way quantum computation where static systems with long-living quantum coherence (memories) interact with moving systems that may possess very short coherence times. Both the generation of the cluster state needed for the computation and its consumption by measurements are carried out simultaneously. As a consequence, effective clusters of one spatial dimension fewer than in the standard approach are sufficient for computation. In particular, universal computation requires only a one-dimensional array of memories. The scheme applies to discrete-variable systems of any dimension as well as to continuous-variable ones, and both are treated equivalently under the light of local complementation of graphs. In this way our formalism introduces a general framework that encompasses and generalizes in a unified manner some previous system-dependent proposals. The procedure is intrinsically well suited for implementations with atom-photon interfaces.
Resumo:
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle.
Resumo:
Interaction of organic xenobiotics with soil water-soluble humic material (WSHM) may influence their environmental fate and bioavailability. We utilized bacterial assays (lux-based toxicity and mineralization by Burkholderia sp. RASC) to assess temporal changes in the bioavailability of [14C]-2,4-dichlorophenol (2,4-DCP) in soil water extracts (29.5 μg mL-1 2,4-DCP; 840.2 μg mL-1 organic carbon). HPLC determined and bioavailable concentrations were compared. Gel permeation chromatography (GPC) was used to confirm the association of a fraction (>50%) of [14C]-2,4-DCP with WSHM. Subtle differences in parameters describing 2,4-DCP mineralization curves were recorded for different soil-2,4-DCP contact times. Problems regarding the interpretation of mineralization data when assessing the bioavailability of toxic compounds are discussed. The lux-bioassay revealed a time-dependent reduction in 2,4-DCP bioavailability: after 7 d, less than 20% was bioavailable. However, GPC showed no quantitative difference in the amount of WSHM-associated 2,4-DCP over this time. These data suggest qualitative changes in the nature of the 2,4-DCP-WSHM association and that associated 2,4-DCP may exert a toxic effect. Although GPC distinguished between free- and WSHM-associated 2,4-DCP, it did not resolve the temporal shift in bioavailability revealed by the lux biosensor. These results stress that assessment of risk posed by chemicals must be considered using appropriate biological assays.
Resumo:
In Europe, maximum journey time for transported sheep is set at 29. h (EC Regulation 1/2005), after which animals must be unloaded, fed and watered in control posts stopping for 24. h, as all other species, before continuing their journey. The industry considers these resting times too general, not taking into account the peculiar differences between species or age classes. Also, loading and unloading have been reported to be detrimental for the animals. Therefore, the industry pushes to reduce the times at control post and avoid unloading the animals from the truck. Since there is little information concerning the effect of resting in a stationary truck after long journeys, the present study aims to evaluate the effect of an 8. h rest stop on the truck for transported ewes compared to being unloaded for resting in a control post for the same amount of time, considering physiological and behavioural measures. Two groups of ewes were transported for 29. h, after which one was unloaded and housed in a pen (P) at the control post while the other was left inside the truck (T). After 8. h stop, a further 6. h travel was headed to the farm of origin. A third group (C) stayed at the farm as control. During the stop, standing, resting, moving and eating behaviour of all groups was recorded. Blood parameters, salivary and faecal cortisol were assessed at different stages. The behaviour of P animals during the resting period was more similar to C than to T ones, where feeding and lying behaviours were restricted by the limited space allowance on the truck. After returning to the farm of origin, both T and P animals showed different parameters' levels as compared to C. P ewes showed a mean loss weight of 2. kg not recorded in group T and showed higher signs of muscular damage compared to C group. It was concluded that, with so short resting times as 8. h, there is no clear advantages in terms of animal welfare for avoiding the unloading and loading of the animals in the control post after long journeys.
Resumo:
The Mediterranean Diet concept was formulated during the sixties, in association with the food consumption pattern of Mediterranean areas that produced olive oil and shared common health styles. These areas, besides their own cultural and religious differences, share common food habits, such as: - The use of olive oil (supplier of monounsaturated fatty acids and antioxidants); - The abundant use of cereals, mainly under the form of excellent quality bread, flour and pasta (providing fibre and energy); - Large and variegate consumption of fruit (fresh and dried), nuts and vegetables (colourful, rich in fibre, antioxidants and other protective materials); - Abundant use of herbs and spices (rich in antioxidants and other protective materials); - Simple culinary methods, using short cooking times and low temperatures (which enhance the preservation of food nutritional and sensorial characteristics). The Mediterranean Diet reflects a set of characteristics that make it internationally recognized as a health promoter eating pattern, where the relation between monounsaturated and saturated fatty acids is highly advantageous for the former, fibre, vitamins and natural antioxidants intake is high, together with a low consumption of animal protein and salt. The obtained results show contents in protein, lipid and carbohydrates very adequate to the “DRI”; The relation between mono and saturated fatty acids (40:9) should be emphasised, together with the high fibre content. Protective nutrients show remarkable results, with a wide variety of vitamins and minerals, in particular Vitamin A, complex B vitamins, biotin, vit. E, folic acid, iron, manganese and selenium, that are widely recognised as important antioxidants and responsible for the good function of the immune system. In conclusion, tomato soup, consumed traditionally as a poor meal, shows to be a health promoter nutritionally complete recipe.
Resumo:
This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.
Resumo:
Les décisions de localisation sont souvent soumises à des aspects dynamiques comme des changements dans la demande des clients. Pour y répondre, la solution consiste à considérer une flexibilité accrue concernant l’emplacement et la capacité des installations. Même lorsque la demande est prévisible, trouver le planning optimal pour le déploiement et l'ajustement dynamique des capacités reste un défi. Dans cette thèse, nous nous concentrons sur des problèmes de localisation avec périodes multiples, et permettant l'ajustement dynamique des capacités, en particulier ceux avec des structures de coûts complexes. Nous étudions ces problèmes sous différents points de vue de recherche opérationnelle, en présentant et en comparant plusieurs modèles de programmation linéaire en nombres entiers (PLNE), l'évaluation de leur utilisation dans la pratique et en développant des algorithmes de résolution efficaces. Cette thèse est divisée en quatre parties. Tout d’abord, nous présentons le contexte industriel à l’origine de nos travaux: une compagnie forestière qui a besoin de localiser des campements pour accueillir les travailleurs forestiers. Nous présentons un modèle PLNE permettant la construction de nouveaux campements, l’extension, le déplacement et la fermeture temporaire partielle des campements existants. Ce modèle utilise des contraintes de capacité particulières, ainsi qu’une structure de coût à économie d’échelle sur plusieurs niveaux. L'utilité du modèle est évaluée par deux études de cas. La deuxième partie introduit le problème dynamique de localisation avec des capacités modulaires généralisées. Le modèle généralise plusieurs problèmes dynamiques de localisation et fournit de meilleures bornes de la relaxation linéaire que leurs formulations spécialisées. Le modèle peut résoudre des problèmes de localisation où les coûts pour les changements de capacité sont définis pour toutes les paires de niveaux de capacité, comme c'est le cas dans le problème industriel mentionnée ci-dessus. Il est appliqué à trois cas particuliers: l'expansion et la réduction des capacités, la fermeture temporaire des installations, et la combinaison des deux. Nous démontrons des relations de dominance entre notre formulation et les modèles existants pour les cas particuliers. Des expériences de calcul sur un grand nombre d’instances générées aléatoirement jusqu’à 100 installations et 1000 clients, montrent que notre modèle peut obtenir des solutions optimales plus rapidement que les formulations spécialisées existantes. Compte tenu de la complexité des modèles précédents pour les grandes instances, la troisième partie de la thèse propose des heuristiques lagrangiennes. Basées sur les méthodes du sous-gradient et des faisceaux, elles trouvent des solutions de bonne qualité même pour les instances de grande taille comportant jusqu’à 250 installations et 1000 clients. Nous améliorons ensuite la qualité de la solution obtenue en résolvent un modèle PLNE restreint qui tire parti des informations recueillies lors de la résolution du dual lagrangien. Les résultats des calculs montrent que les heuristiques donnent rapidement des solutions de bonne qualité, même pour les instances où les solveurs génériques ne trouvent pas de solutions réalisables. Finalement, nous adaptons les heuristiques précédentes pour résoudre le problème industriel. Deux relaxations différentes sont proposées et comparées. Des extensions des concepts précédents sont présentées afin d'assurer une résolution fiable en un temps raisonnable.
Resumo:
X-ray crystallography shows that [Ag2L2(H2O)(2)](BF4)(2) where L is a 1:1 condensate of 1,2-diphenylethane-1,2-dione and 2-(2-aminoethyl pyridine), contains an Ag(I)-Ag(I) bond of length 2.979(2) angstrom and an angular, intraligand interaction of the keto O with the pi cloud of the pyridine moiety (O-pyridine centroid = 3.12 angstrom). Model MP2/6-311++G(d,p) calculations indicate that the observed lone pair-pi type interaction is stabilising and not merely a tolerated short contact. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.
Resumo:
Following a malicious or accidental atmospheric release in an outdoor environment it is essential for first responders to ensure safety by identifying areas where human life may be in danger. For this to happen quickly, reliable information is needed on the source strength and location, and the type of chemical agent released. We present here an inverse modelling technique that estimates the source strength and location of such a release, together with the uncertainty in those estimates, using a limited number of measurements of concentration from a network of chemical sensors considering a single, steady, ground-level source. The technique is evaluated using data from a set of dispersion experiments conducted in a meteorological wind tunnel, where simultaneous measurements of concentration time series were obtained in the plume from a ground-level point-source emission of a passive tracer. In particular, we analyze the response to the number of sensors deployed and their arrangement, and to sampling and model errors. We find that the inverse algorithm can generate acceptable estimates of the source characteristics with as few as four sensors, providing these are well-placed and that the sampling error is controlled. Configurations with at least three sensors in a profile across the plume were found to be superior to other arrangements examined. Analysis of the influence of sampling error due to the use of short averaging times showed that the uncertainty in the source estimates grew as the sampling time decreased. This demonstrated that averaging times greater than about 5min (full scale time) lead to acceptable accuracy.
Resumo:
We study the feasibility of using the singular vector technique to create initial condition perturbations for short-range ensemble prediction systems (SREPS) focussing on predictability of severe local storms and in particular deep convection. For this a new final time semi-norm based on the convective available potential energy (CAPE) is introduced. We compare singular vectors using the CAPE-norm with SVs using the more common total energy (TE) norm for a 2-week summer period in 2007, which includes a case of mesoscale extreme rainfall in the south west of Finland. The CAPE singular vectors perturb the CAPE field by increasing the specific humidity and temperature of the parcel and increase the lapse rate above the parcel in the lower troposphere consistent with physical considerations. The CAPE-SVs are situated in the lower troposphere. This in contrast to TE-SVs with short optimization times which predominantly remain in the high troposphere. By examining the time evolution of the CAPE singular values we observe that the convective event in the south west of Finland is clearly associated with high CAPE singular values.
Resumo:
The predictability of high impact weather events on multiple time scales is a crucial issue both in scientific and socio-economic terms. In this study, a statistical-dynamical downscaling (SDD) approach is applied to an ensemble of decadal hindcasts obtained with the Max-Planck-Institute Earth System Model (MPI-ESM) to estimate the decadal predictability of peak wind speeds (as a proxy for gusts) over Europe. Yearly initialized decadal ensemble simulations with ten members are investigated for the period 1979–2005. The SDD approach is trained with COSMO-CLM regional climate model simulations and ERA-Interim reanalysis data and applied to the MPI-ESM hindcasts. The simulations for the period 1990–1993, which was characterized by several windstorm clusters, are analyzed in detail. The anomalies of the 95 % peak wind quantile of the MPI-ESM hindcasts are in line with the positive anomalies in reanalysis data for this period. To evaluate both the skill of the decadal predictability system and the added value of the downscaling approach, quantile verification skill scores are calculated for both the MPI-ESM large-scale wind speeds and the SDD simulated regional peak winds. Skill scores are predominantly positive for the decadal predictability system, with the highest values for short lead times and for (peak) wind speeds equal or above the 75 % quantile. This provides evidence that the analyzed hindcasts and the downscaling technique are suitable for estimating wind and peak wind speeds over Central Europe on decadal time scales. The skill scores for SDD simulated peak winds are slightly lower than those for large-scale wind speeds. This behavior can be largely attributed to the fact that peak winds are a proxy for gusts, and thus have a higher variability than wind speeds. The introduced cost-efficient downscaling technique has the advantage of estimating not only wind speeds but also estimates peak winds (a proxy for gusts) and can be easily applied to large ensemble datasets like operational decadal prediction systems.
Resumo:
This article describes and compares three heuristics for a variant of the Steiner tree problem with revenues, which includes budget and hop constraints. First, a greedy method which obtains good approximations in short computational times is proposed. This initial solution is then improved by means of a destroy-and-repair method or a tabu search algorithm. Computational results compare the three methods in terms of accuracy and speed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nanostructural beta-nickel hydroxide (beta-Ni(OH)(2)) plates were prepared using the microwave hydrothermal (MH) method at a low temperature and short reaction times. An ammonia solution was employed as the coordinating agent, which reacts with [Ni(H(2)O)(6)](2+) to control the growth of beta-Ni(OH)(2) nuclei. A trigonal beta-Ni(OH)(2) single phase was observed by X-ray diffraction (XRD) analyses, and the crystal cell was constructed with structural parameters and atomic coordinates obtained from Rietveld refinement. Field emission scanning electron microscopy (FE-SEM) images revealed that the samples consisted of hexagonal-shaped nanoplates with a different particle size distribution. Broad absorption bands assigned as transitions of Ni(2+) in oxygen octahedral sites were revealed by UV-vis spectra. Photoluminescence (PL) properties observed with a maximum peak centered in the blue-green region were attributed to different defects, which were produced during the nucleation process. We present a growth process scheme of the beta-Ni(OH)(2) nanoplates. (C) 2011 Elsevier Inc. All rights reserved.