960 resultados para SEX-RATIO
Resumo:
To our knowledge, there is, so far, no evidence that incubation temperature can affect sex ratios in birds, although this is common in reptiles. Here, we show that incubation temperature does affect sex ratios in megapodes, which are exceptional among birds because they use environmental heat sources for incubation. In the Australian brush-turkey Alectura lathami, a mound-building megapode, more males hatch at low incubation temperatures and more females hatch at high temperatures, whereas the proportion is 1 : 1 at the average temperature found in natural mounds. Chicks from lower temperatures weigh less, which probably affects offspring survival, but are not smaller. Megapodes possess heteromorphic sex chromosomes like other birds, which eliminates temperature-dependent sex determination, as described for reptiles, as the mechanism behind the skewed sex ratios at high and low temperatures. Instead, our data suggest a sex-biased temperature-sensitive embryo mortality because mortality was greater at the lower and higher temperatures, and minimal at the middle temperature where the sex ratio was 1 : 1.
Resumo:
Sand and nest temperatures were monitored during the 2002-2003 nesting season of the green turtle, Chelonia mydas, at Heron Island, Great Barrier Reef, Australia. Sand temperatures increased from similar to 24 degrees C early in the season to 27-29 degrees C in the middle, before decreasing again. Beach orientation affected sand temperature at nest depth throughout the season; the north facing beach remained 0.7 degrees C warmer than the east, which was 0.9 degrees C warmer than the south, but monitored nest temperatures were similar across all beaches. Sand temperature at 100 cm depth was cooler than at 40 cm early in the season, but this reversed at the end. Nest temperatures increased 2-4 degrees C above sand temperatures during the later half of incubation due to metabolic heating. Hatchling sex ratio inferred from nest temperature profiles indicated a strong female bias.
Resumo:
We have modified a technique which uses a single pair of primer sets directed against homologous but distinct genes on the X and Y chromosomes, all of which are coamplified in the same reaction tube with trace amounts of radioactivity. The resulting bands are equal in length, yet distinguishable by restriction enzyme sites generating two independent bands, a 364 bp X-specific band and a 280 bp Y-specific band. A standard curve was generated to show the linear relationship between X/Y ratio average vs. %Y or %X chromosomal content. Of the 51 purified amniocyte DNA samples analyzed, 16 samples showed evidence of high % X contamination while 2 samples demonstrated higher % Y than the expected 50% X and 50% Y chromosomal content. With regards to the 25 processed sperm samples analyzed, X-sperm enrichment was evident when compared to the primary sex ratio whereas Y-sperm was enriched when we compared before and after selection samples.
Resumo:
[EN] A nesting population of loggerhead sea turtles Caretta caretta has recently been described for Boa Vista Island, Cape Verde Archipelago (Western Africa). Since 1998, “Projecto Cabo Verde Natura 2000” has monitored three beaches during the turtle breeding season. The beaches being monitored - Calheta, Errata and Ponta Cosme - are located in the southeast part of Boa Vista Island. This work intends to give a first insight into the Boa Vista Island sea turtle population’s sex ratio using a histological approach, as sexual determination in sea turtles is known to be temperature-dependent (TSD or temperature-dependent sex determination).
Resumo:
[EN] Global warming can affect nesting success of sea turtles due to the rise of the sea level and the subsequent increased inundation or erosion of nesting beaches. Moreover, it can reduce male production to levels that can alter reproduction due to their temperature dependant sex determination (TSD). Now, mean nest temperatures all around the world predict a predominance of female hatchlings, and this trend may increase with global warming in the next decades.
Resumo:
Recently shown in some termites, Asexual Queen Succession (AQS) is a reproductive strategy in which the primary queen is replaced by numerous parthenogenetically-produced neotenic queens that mate with the primary king. In contrast, the workforce and alate dispersers are produced sexually. If the primary king is replaced by a sexually-produced neotenic son, the matings between neotenic male and females beget asymmetries in the reproductive value of alates, promoting a female-biased alate sex-ratio. Cavitermes tuberosus (Termitidae: Termitinae) is a soil-feeding tropical species, which shows parthenogenetically-produced neotenics and an AQS syndrome. Our work aims to characterize the reproductive strategies in this species by determining (i) the developmental scheme, (ii) the genetic origin of sexuals, (iii) the level of genetic structure (analysis of 65 nests distributed in 14 sites) and (iv) the alate sex-ratio.Our results show that (i) neotenic females develop from the third or fourth nymphal instar; (ii) the majority of neotenic females (82%) are parthenogenetically-produced while only 2% of female alates are so; (iii) nests are differentiated within sites, indicating that the foundation of new nests mainly occurs by nuptial flights; (iv) numerical sex-ratio of alate-destined sexuals is balanced (SRN=0.509, IC95%=0.497-0.522) while investment sex-ratio is slightly female-biased (SRE=0.529, IC95%=0.517-0.542). Altogether, our results demonstrate AQS and its implications in C. tuberosus, and reveal particularities compared to other species in which AQS has been demonstrated: neotenic-headed nests are less frequent than primary-headed ones and neotenic females never become physogastric. AQS is found in various ecological contexts and seems phylogenetically more widespread than previously thought. This strategy shows some evolutionary advantages but these seem to differ depending on species.
Resumo:
The equal sex ratios found in many species with heterogametic sex determination may be a consequence of selection for equality or the result of the Mendelian segregation of the two sex chromosomes. A lack of genetic variation in sex ratio in species with heterogamety has been the major obstacle in distinguishing between these two hypotheses. We overcome this obstacle by generating hybrids between two species of Drosophila. The resulting hybrid lines had biased sex ratios, allowing us to observe the evolution of sex ratio in replicate populations. Sex ratio converged towards 1:1 after 16 generations of natural selection. These changes in sex ratio were not due to differences in viability between the sexes and the loci underlying the variation in sex ratio were not sex-linked. Equal sex ratios may therefore be the result of natural selection as Fisher predicted.
Resumo:
Hippolyte obliquimanus is a small, gonochoric shrimp found in algal substrates along the western Atlantic coast of Brazil, particularly in association with seaweed of the genus Sargassum. We studied population features (sexual ratio, reproductive period and temporal distribution) of H. obliquimanus in southeastern Brazil, including its relationships with the seasonality of banks of this alga. Specimens were collected at two-monthly intervals from March 2005 to January 2006, in Ubatuba Bay. The sex of individuals was checked, and the carapace length measured. In total, 668 individuals were collected: 211 males (0.70-2.50 mm carapace length), 341 non-ovigerous females (0.55-2.90 mm), and 116 ovigerous females (1.55-3.20 mm). Hippolyte obliquimanus showed seasonal-continuous reproduction and variable continuous recruitment. The highest number of animals (75%) was collected in fall-winter. The percentages of ovigerous females/total females (fall-winter: 27%; spring-summer: 26%) and the sexual ratio (fall-winter: 31%; spring-summer: 32%) were practically equal in both periods. The sexual ratio showed a predominance of females in almost all size classes, and we detected a new sex ratio pattern for this species. The seasonal variation in the number of individuals can be related to its migration to deeper areas, due to the decrease in the abundance of Sargassum sp. in shallower waters in spring-summer.
Resumo:
The Noisy Miner Manorina melanocephala (Meliphagidae) is a cooperatively breeding bird species in which sons often remain on their natal home ranges and help one or both of their parents. In a population of Noisy Miners in SE Queensland, Australia, a molecular technique was used to explore adult and offspring sex ratios. and also hatching sequences. Among the adult population, there were 2.31 males for every female, and roughly 99% of helping was performed by males. At hatching and fledging, the population sex ratio was even, with exactly 57 males and 57 females. However, in 17 out of 18 broods the first egg to hatch was male, First-hatched males were significantly larger and heavier than their sisters just prior to fledging. Through their helping behaviour, large healthy sons could clearly enhance the future reproductive success of parents. and benefit the entire group. Sex-biased hatching sequences could potentially provide cooperatively breeding birds with a subtle and precise way of varying investment in the helping sex.
Resumo:
Offspring sex ratios were examined at the population and family level in the sexually monomorphic, socially monogamous fairy martin Petrochelidon ariel at five colony sites over a 4-year period (1993 1996). The sex of 465 nestlings from 169 broods % as determined using sex-specific PCR at the CHD locus. In accordance with predicted sex allocation patterns, population sex ratios at hatching and fledging did not differ from parity in an), year and the variance in brood sex ratios did not deviate from the binomial distribution, Further, brood sex ratio did not vary with hatching date during the season, brood number, brood size or colony size, The sex ratio or broods with extra-pair young did not differ from those without, while the sex ratio of broods fathered by males that gained extra-pair fertilizations did not differ from broods fathered by other males. Extra-pair chicks were as likely to be male as female. Neither the total number of feeding visits to the brood nor the relative feeding contribution by the sexes varied significantly with brood sex ratio. Brood sex ratios were also unrelated to paternal size, condition and breeding experience or maternal condition and breeding experience, However, contrary to our prediction, brood sex ratio was negatively correlated with maternal size. Generally, these results were consistent with our expectations that brood sex ratios would not vary with environmental factors or parental characteristics, and would not influence the level of parental provisioning. However, the finding that females with longer tarsi produced an excess of daughters is difficult to reconcile with our current understanding or fairy martin life history and breeding ecology.
Resumo:
This study has been carried out at the central region of the Araguaia river on the border between the states of Goiás and Mato Grosso in the Brazilian Amazon Basin from September to December 2000. We recorded temperature fluctuation, clutch-size, incubation period and hatching success rate and hatchlings' sex ratio of five nests of Podocnemis expansa (Schweigger, 1812). Despite the relatively small sample size we infer that: a) nests of P. expansa in the central Araguaia river have a lower incubation temperature than nests located further south; however, incubation period is shorter, hatching success rate is lower and clutch-size is larger; b) Podocnemis expansa may present a female-male-female (FMF) pattern of temperature sex-determination (TSD); c) thermosensitive period of sex determination apparently occur at the last third of the incubation period; and, d) future studies should prioritize the relationship between temperature variation (i.e., range and cycle) and embryos development, survivorship and sex determination.
Resumo:
Complex sex-determination systems are a priori unstable and require specific selective forces for their maintenance. Analytical derivations have suggested that sex-antagonistic selection may play such a role, but this assumed absence of recombination between the sex-determining and sex-antagonistic genes. Using individual-based simulations, and focusing on the sex chromosome and coloration polymorphisms of platy fishes as a case study, we show that the conditions for polymorphism maintenance induce female-biases in primary sex ratios, so that sex-ratio selection makes the system collapse towards male- or female heterogamety as soon as recombinant genotypes appear. However, a polymorphism can still be maintained under scenarios comprising strong sexual selection against dull males, mild natural selection against bright females, and low recombination rates. Though such conditions are plausibly met in natural populations of fishes harbouring such polymorphisms, quantitative empirical evaluations are required to properly test whether sex-antagonistic selection is a causal agent, or if other selective processes are required (such as local mate competition favouring female biased sex ratios).
Resumo:
The study of sex allocation in social Hymenoptera (ants, bees, and wasps) provides an excellent opportunity for testing kin-selection theory and studying conflict resolution. A queen-worker conflict over sex allocation is expected because workers are more related to sisters than to brothers, whereas queens are equally related to daughters and sons. If workers fully control sex allocation, split sex ratio theory predicts that colonies with relatively high or low relatedness asymmetry (the relatedness of workers to females divided by the relatedness of workers to males) should specialize in females or males, respectively. We performed a meta-analysis to assess the magnitude of adaptive sex allocation biasing by workers and degree of support for split sex ratio theory in the social Hymenoptera. Overall, variation in relatedness asymmetry (due to mate number or queen replacement) and variation in queen number (which also affects relatedness asymmetry in some conditions) explained 20.9% and 5% of the variance in sex allocation among colonies, respectively. These results show that workers often bias colony sex allocation in their favor as predicted by split sex ratio theory, even if their control is incomplete and a large part of the variation among colonies has other causes. The explanatory power of split sex ratio theory was close to that of local mate competition and local resource competition in the few species of social Hymenoptera where these factors apply. Hence, three of the most successful theories explaining quantitative variation in sex allocation are based on kin selection.
Resumo:
Sex allocation data in eusocial Hymenoptera (ants, bees and wasps) provide an excellent opportunity to assess the effectiveness of kin selection, because queens and workers differ in their relatedness to females and males. The first studies on sex allocation in eusocial Hymenoptera compared population sex investment ratios across species. Female-biased investment in monogyne (= with single-queen colonies) populations of ants suggested that workers manipulate sex allocation according to their higher relatedness to females than males (relatedness asymmetry). However, several factors may confound these comparisons across species. First, variation in relatedness asymmetry is typically associated with major changes in breeding system and life history that may also affect sex allocation. Secondly, the relative cost of females and males is difficult to estimate across sexually dimorphic taxa, such as ants. Thirdly, each species in the comparison may not represent an independent data point, because of phylogenetic relationships among species. Recently, stronger evidence that workers control sex allocation has been provided by intraspecific studies of sex ratio variation across colonies. In several species of eusocial Hymenoptera, colonies with high relatedness asymmetry produced mostly females, in contrast to colonies with low relatedness asymmetry which produced mostly males. Additional signs of worker control were found by investigating proximate mechanisms of sex ratio manipulation in ants and wasps. However, worker control is not always effective, and further manipulative experiments will be needed to disentangle the multiple evolutionary factors and processes affecting sex allocation in eusocial Hymenoptera.
Resumo:
We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.