934 resultados para SERUM-ALBUMIN
Resumo:
The protein binding constant, binding sites of the Strychnos alkaloid-strychnine and bovine serum albumin (BSA) was determined by capillary electrophoretic frontal analysis (CE-FA) for the first time. The experiment was carried out in a polyacrylamide-coated fused silica capillary (48.4 cmx50 mu m i.d., 38.1 cm effective length) with 20 mmol/L citrate/MES buffer (pH 6.0, ionic strength 0.17). The applied voltage was 12 kV and detection wavelength was set at 257 nm. The plateau height of the peak was employed to determine the unbound concentration of drug in BSA equilibrated sample solution based on the external drug standard in the absence of protein. The present method provides a convenient, accurate technique for the early stage of drug screening.
Resumo:
In recent years, the use of swelling polymeric matrices for the encapsulation and controlled release of protein drugs has received significant attention. The purpose of the present study was to investigate the release of albumin, a model protein from alginate/hydroxypropyl-methylcellulose (HPMC) gel beads. A hydrogel system comprised of two natural, hydrophilic polymers; sodium alginate and HPMC was studied as a carrier of bovine serum albumin (BSA) which was used as a model protein. The morphology, bead size and the swelling ratio were studied in different physical states; fully swollen, dried and reswollen using scanning electron microscopy and image analysis. Finally the effect of different alginate/HPMC ratios on the BSA release profile in physiological saline solution was investigated. Swelling experiments revealed that the bead diameter increases with the viscosity of the alginate solution while the addition of HPMC resulted in a significant increase of the swelling ratio. The BSA release patterns showed that the addition of HPMC increased the protein-release rate while the release mechanism fitted the Peppas model. Alginate/HPMC beads prepared using the ionic gelation exhibited high BSA loading efficiency for all formulations. The presence of HPMC increased the swelling ability of the alginate beads while the particle size remained unaffected. Incorporation of HPMC in the alginate gels also resulted in improved BSA release in physiological saline solution. All formulations presented a non-Fickian release mechanism described by the Peppas model. In addition, the implementation of non-parametric tests showed significant differences in the release patterns between the alginate/HPMC and the pure alginate beads, respectively.
Resumo:
We report an investigation of the site specificity, extent and nature of modification of bovine serum albumin (BSA) incubated with fructose or glucose at physiological temperature and pH. Sites of early glycation (Heyns rearrangement products (HRP) from fructose; fructoselysine (FL) from glucose) as well as advanced glycation (N-epsilon-(carboxymethyl)lysine; CML) wereanalyzed by liquid chromatography-mass spectrometry. The major site of modification by fructose, like glucose, is Lysine-524 and this results in, respectively, 31 and 76% loss of the corresponding unmodified tryptic peptide, Gln525-Lys533. In addition, total lysine, HRP, FL, CML and N-epsilon-(carboxyethyl)lysine in the incubations, was quantified. Almost all of the loss of lysine in the fructose-modified BSA was attributed to the formation of CML, with the yield of CML being up to 17-fold higher than glucose-modified BSA. A mechanism for the formation of CML from the HRP is proposed.
Resumo:
Bovine serum albumin (BSA) is a commonly used model protein in the development of pharmaceutical formulations. In order to assay its release from various dosage forms, either the bicinchoninic acid (BCA) assay or a more specific size-exclusion high performance liquid chromatography (SE-HPLC) method are commonly employed. However, these can give erroneous results in the presence of some commonly-used pharmaceutical excipients. We therefore investigated the ability of these methods to accurately determine BSA concentrations in pharmaceutical formulations that also contained various polymers and compared them with a new and compared with a new reverse-phase (RP)–HPLC technique. We found that the RP-HPLC technique was the most suitable method. It gave a linear response in the range of 0.5 -100 µg/ml with a correlation coefficient of 0.9999, a limit of detection of 0.11 µg/ml and quantification of 0.33 µg/ml. The performed ‘t’ test for the estimated and theoretical concentration indicated no significant difference between them providing the accuracy. Low % relative standard deviation values (0.8-1.39%) indicate the precision of the method. Furthermore, the method was used to quantify in vitro BSA release from polymeric freeze-dried formulations.
Resumo:
The extent of absorption of dietary advanced glycation end products (AGEs) is not fully known. The possible physiological impact of these absorbed components on inflammatory processes has been studied little and was the aim of this investigation. Aqueous solutions of bovine casein and glucose were heated at 95 degrees C for 5 h to give AGE-casein (AGE-Cas). Simulated stomach and small intestine digestion of AGE-Cas and dialysis (molecular mass cutoff of membrane = 1 kDa) resulted in a low molecular mass (LMM) fraction of digestion products, which was used to prepare bovine serum albumin (BSA)-LMM-AGE-Cas complexes. Stimulation of human microvascular endothelial cells with BSA-LMM-AGE-Cas complexes significantly increased mRNA expression of the receptor of AGE (RAGE), galectin-3 (AGE-113), tumor necrosis factor alpha, and a marker of the mitogen-activated protein kinase pathway (MAPK-1), as well as p65NF-kappa B activation. Cells treated with LMM digestion products of AGE-Cas significantly increased AGE-R3 mRNA expression. Intracellular reactive oxygen species production increased significantly in cells challenged with BSA-LMM-AGE-Cas and LMM-AGE-Cas. In conclusion, in an in vitro cell system, digested dietary AGEs complexed with serum albumin play a role in the regulation of RAGE and down-stream inflammatory pathways. AGE-R3 may protect against these effects.
Resumo:
The binding of drugs to plasma proteins – especially serum albumin – is an important factor in controlling the availability and distribution of these drugs. In this study we have investigated the binding of two drugs commonly used to treat liver fluke infections, albendazole (ABZ) and triclabendazole (TCBZ), and their sulphoxide metabolites to bovine serum albumin (BSA). Both ABZ and TCBZ caused shifts in the mobility of BSA in native gel electrophoresis. No such changes were observed with the sulphoxides under identical conditions. The drugs, and their sulphoxides, caused quenching of the intrinsic tryptophan fluorescence of BSA, indicating association between the drugs and this protein. Quantification of this quenching suggested a 5–10-fold reduction in affinity of the sulphoxides compared to the parent compounds. These results are discussed in respect to previous work on the pharmacodynamics of these fasciolicides and will inform the design of novel anthelmintics.
Resumo:
Particulate colloids often occur together with proteins in sewage-impacted water. Using Bovine Serum Albumin (BSA) as a surrogate for protein in sewage, column experiments investigating the capacity of iron-oxide coated sands to remove latex microspheres from water revealed that microsphere attenuation mechanisms depended on antecedent BSA coverage. Dual pulse experiment (DPE) results suggested that where all BSA was adsorbed, subsequent multiple pore volume microsphere breakthrough curves reflected progressively reduced colloid deposition rates with increasing adsorbed BSA content. Modelling colloid responses suggested adsorption of 1 µg BSA generated the same response as blockage by between 7.1x108 and 2.3x109 deposited microspheres. By contrast, microsphere responses in DPEs where BSA coverage of the deposition sites approached/ reached saturation revealed the coated sand maintained a finite capacity to attenuate microspheres, even when incapable of further BSA adsorption. Subsequent microsphere breakthrough curves demonstrated the matrix’s colloid attenuation capacity progressively increased with continued microsphere deposition. Experimental findings suggested BSA adsorption on the sand surface approaching/ reaching saturation generated attractive deposition sites for colloids, which became progressively more attractive with further colloid deposition (filter ripening). Results demonstrate that adsorption of a single type of protein may either enhance or inhibit colloid mobility in saturated porous media.
Resumo:
The ability of chlorogenic acid to inhibit oxidation of human low-density lipoprotein (LDL) was studied by in vitro copper-induced LDL oxidation. The effect of chlorogenic acid on the lag time before LDL oxidation increased in a dose dependent manner by up to 176% of the control value when added at concentrations of 0.25 -1.0 μM. Dose dependent increases in lag time of LDL oxidation were also observed, but at much higher concentrations, when chlorogenic acid was incubated with LDL (up to 29.7% increase in lag phase for 10 μM chlorogenic acid) or plasma (up to 16.6% increase in lag phase for 200 μM chlorogenic acid) prior to isolation of LDL, and this indicated that chlorogenic acid was able to bind, at least weakly, to LDL. Bovine serum albumin (BSA) increased the oxidative stability of LDL in the presence of chlorogenic acid. Fluorescence spectroscopy showed that chlorogenic acid binds to BSA with a binding constant of 3.88 x 104 M-1. BSA increased the antioxidant effect of chlorogenic acid, and this was attributed to copper ions binding to BSA, thereby reducing the amount of copper available for inducing lipid peroxidation.
Resumo:
The interaction between four flavonoids (catechin, epicatechin, rutin and quercetin) and bovine serum albumin (BSA) was investigated using tryptophan fluorescence quenching. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between the flavonoids and BSA. The binding affinity was found to be strongest for quercetin, and ranked in the order quercetin>rutin>epicatechin=catechin. The pH in the range of 5 to 7.4 does not affect significantly (p<0.05) the association of rutin, epicatechin and catechin with BSA, but quercetin exhibited a stronger affinity at pH 7.4 than at lower pH (p<0.05). Quercetin has a total quenching effect on BSA tryptophan fluorescence at a molar ratio of 10:1 and rutin at approximately 25:1. However, epicatechin and catechin did not fully quench tryptophan fluorescence over the concentration range studied. Furthermore, the data suggested that the association between flavonoids and BSA did not change molecular conformation of BSA and that hydrogen bonding, ionic and hydrophobic interaction are equally important driving forces for protein-flavonoid association.
Resumo:
Six nutrient formulations were studied for their efficacy in inducing mitosis in white lupin seedling cotyledon protoplasts of which the formulations of Schafer-Menuhr & Sturmer (AS) and Kao (K8p) were found to be superior over the other four when supplemented with 6-benzylaminopurine and alpha-naphthaleneacetic acid (alpha-NAA). An unltrafiltration treatment of K8p increased mitotic frequency by 130% when compared with the untreated control. Medium enrichment with 0.2% bovine serum albumin (BSA) brought about a dramatic 1341% rise in protoplast division in comparison with BSA-free medium but only when the enrichment was carried out in Kao and Michayluk (KM8p) background containing 2, 4-dichlorophenoxyacetic acid, alpha-NAA and zeatin. A higher number of protocolonies (each proliferating from single protoplast following multiple divisions) were seen in 0.4% BSA. With this breakthrough in white lupin protoplast research, it is now possible to reproducibly obtain protocolonies that was hitherto not possible.
Resumo:
The interactions of bovine serum albumin (BSA) with three ethylene oxide/butylene oxide (E/B) copolymers having different block lengths and varying molecular architectures is examined in this study in aqueous solutions. Dynamic light scattering (DLS) indicates the absence of BSA-polymer binding in micellar systems of copolymers with lengthy hydrophilic blocks. On the contrary, stable protein-polyrner aggregates were observed in the case of E18B10 block copolymer. Results from DLS and SAXS suggest the dissociation of E/B copolymer micelles in the presence of protein and the absorption of polymer chains to BSA surface. At high protein loadings, bound BSA adopts a more compact conformation in solution. The secondary structure of the protein remains essentially unaffected even at high polymer concentrations. Raman spectroscopy was used to give insight to the configurations of the bound molecules in concentrated solutions. In the vicinity of the critical gel concentration of E18B10 introduction of BSA can dramatically modify the phase diagram, inducing a gel-sol-gel transition. The overall picture of the interaction diagram of the E18B10-BSA reflects the shrinkage of the suspended particles due to destabilization of micelles induced by BSA and the gelator nature of the globular protein. SAXS and rheology were used to further characterize the structure and flow behavior of the polymer-protein hybrid gels and sols.
Resumo:
We report an investigation of the site specificity, extent and nature of modification of bovine serum albumin (BSA) incubated with fructose or glucose at physiological temperature and pH. Sites of early glycation (Heyns rearrangement products (HRP) from fructose; fructoselysine (FL) from glucose) as well as advanced glycation (N-epsilon-(carboxymethyl)lysine; CML) wereanalyzed by liquid chromatography-mass spectrometry. The major site of modification by fructose, like glucose, is Lysine-524 and this results in, respectively, 31 and 76% loss of the corresponding unmodified tryptic peptide, Gln525-Lys533. In addition, total lysine, HRP, FL, CML and N-epsilon-(carboxyethyl)lysine in the incubations, was quantified. Almost all of the loss of lysine in the fructose-modified BSA was attributed to the formation of CML, with the yield of CML being up to 17-fold higher than glucose-modified BSA. A mechanism for the formation of CML from the HRP is proposed.
Resumo:
The interaction of epicatechin with bovine serum albumin (BSA) was studied by isothermal titration calorimetry. The binding constant (K) and associated thermodynamic binding parameters (n, Delta H) were determined for the interaction at three solution concentrations of BSA using a binding model assuming independent binding sites. These data show weak non-covalent binding of epicatechin to BSA. The interaction energetics varied with BSA concentration in the calorimeter cell, suggesting that the binding of epicatechin induced BSA aggregation. The free energy (Delta G) remained constant within a range of 2 kJ mol(-1) and negative entropy was observed, indicating an enthalpy driven exothermic interaction. It is concluded that the non-covalent epicatechin-BSA complex is formed by hydrogen bonding. (c) 2006 Elsevier B.V. All rights reserved.