374 resultados para SEPARATIONS
Resumo:
Two binuclear copper(II) complexes one (complex 1) with a macrocyclic ligand (H(2)L1) and other (complex 2) with a macroacyclic (end-off type) compartmental ligand (HL2) have been synthesized from single pot template synthesis involving copper(II) nitrate, 1,2diaminoethane, 4-methyl-2,6-diformylphenol, and sodium azide. Structure analysis of complex I reveals that there are actually two half molecules present in the asymmetric unit and so two complexes (molecule-I and molecule-II) are present in unit cell, although they show slight differences. The two Cu(II) centers are in distorted square pyramidal coordination environment with two endogenous phenoxo bridges provided by the phenolate of H(2)L1 I having Cu-Cu separations of 2.9133(10) angstrom and 2.9103(10) in the two molecules. In complex 2 the coordination environments around two Cu(II) centers are asymmetric, Cu1 is in distorted square pyramidal environment whereas, the coordination environment around Cu2 is distorted octahedral. The two Cu(II) centers in complex 2 are connected by two different kinds of bridges, one is endogenous phenoxo bridge provided by the phenolate of the ligand HL2 and the other is exogenous azido bridge (mu-(1),(l) type) with Cu-Cu distance of 3.032(10) angstrom. Variable temperature magnetic studies show that two Cu(II) centers in both the complexes are strongly antiferromagnetically coupled with J = -625 +/- 5 cm(-1) and J = -188.6 +/- 1cm(-1) for complex 1 and 2, respectively. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Data assimilation provides an initial atmospheric state, called the analysis, for Numerical Weather Prediction (NWP). This analysis consists of pressure, temperature, wind, and humidity on a three-dimensional NWP model grid. Data assimilation blends meteorological observations with the NWP model in a statistically optimal way. The objective of this thesis is to describe methodological development carried out in order to allow data assimilation of ground-based measurements of the Global Positioning System (GPS) into the High Resolution Limited Area Model (HIRLAM) NWP system. Geodetic processing produces observations of tropospheric delay. These observations can be processed either for vertical columns at each GPS receiver station, or for the individual propagation paths of the microwave signals. These alternative processing methods result in Zenith Total Delay (ZTD) and Slant Delay (SD) observations, respectively. ZTD and SD observations are of use in the analysis of atmospheric humidity. A method is introduced for estimation of the horizontal error covariance of ZTD observations. The method makes use of observation minus model background (OmB) sequences of ZTD and conventional observations. It is demonstrated that the ZTD observation error covariance is relatively large in station separations shorter than 200 km, but non-zero covariances also appear at considerably larger station separations. The relatively low density of radiosonde observing stations limits the ability of the proposed estimation method to resolve the shortest length-scales of error covariance. SD observations are shown to contain a statistically significant signal on the asymmetry of the atmospheric humidity field. However, the asymmetric component of SD is found to be nearly always smaller than the standard deviation of the SD observation error. SD observation modelling is described in detail, and other issues relating to SD data assimilation are also discussed. These include the determination of error statistics, the tuning of observation quality control and allowing the taking into account of local observation error correlation. The experiments made show that the data assimilation system is able to retrieve the asymmetric information content of hypothetical SD observations at a single receiver station. Moreover, the impact of real SD observations on humidity analysis is comparable to that of other observing systems.
Resumo:
The possible mechanisms of particle aggregation and reduction in liquid limit of the Cochin marine clay on drying are investigated. Mineralogical analysis showed the absence of halloysite in the marine specimen. Experimental results also ruled out the possibility of cementitious material being responsible for particle aggregation and reduction in clay plasticity on drying. The presence of calcium and magnesium as the predominant exchangeable ions and of a high pore salt concentration facilitates strong interparticle attraction and small particle separations; the latter leads to development of significant capillary stresses that permits an intimate contact of particles and growth of strong van der Waals' and Coulombic bonds.
Resumo:
Adhesive forces between two approaching asperities will deform the asperities, and under certain conditions this will result in a sudden runaway deformations leading to a jump-to-contact instability. We present finite element-based numerical studies on adhesion-induced deformation and instability in asperities. We consider the adhesive force acting on an asperity, when it is brought near a rigid half-space, due to van der Waals interaction between the asperity and the half-space. The adhesive force is considered to be distributed over the volume of the asperity (body force), thus resulting in more realistic simulations for the length scales considered. Iteration scheme based on a ``residual stress update'' algorithm is used to capture the effect of deformation on the adhesion force, and thereby the equilibrium configuration and the corresponding force. The numerical results are compared with the previous approximate analytical solutions for adhesion force, deformation of the asperity and adhesion-induced mechanical instability (jump-to-contact). It is observed that the instability can occur at separations much higher,and could possibly explain the higher value of instability separation observed in experiments. The stresses in asperities, particularly in case of small ones, are found to be high enough to cause yielding before jump -to-contact. The effect of roughness is considered by modeling a spherical protrusion on the hemispherical asperity.This small-scale roughness at the tip of the asperities is found to control the deformation behavior at small separations, and hence are important in determining the friction and wear due to the jump-to-contact instability.
Resumo:
The short range interactions in He2, Ne2 and Ar2 have been studied in terms of the electronic forces as functions of their internuclear separations employing their single configuration SCF wave functions. The results show that the constituent molecular orbitals behave differently in terms of the forces they exert on the nuclei during the interaction process. The different behaviour of the orbitals is also reflected in the redistribution of charges.
Resumo:
In order to describe the atmospheric turbulence which limits the resolution of long-exposure images obtained using ground-based large telescopes, a simplified model of a speckle pattern, reducing the complexity of calculating field-correlations of very high order, is presented. Focal plane correlations are used instead of correlations in the spatial frequency domain. General tripple correlations for a point source and for a binary are calculated and it is shown that they are not a strong function of the binary separation. For binary separations close to the diffraction limit of the telescope, the genuine triple correlation technique ensures a better SNR than the near-axis Knox-Thompson technique. The simplifications allow a complete analysis of the noise properties at all levels of light.
Resumo:
For the specific case of binary stars, this paper presents signal-to-noise ratio (SNR) calculations for the detection of the parity (the side of the brighter component) of the binary using the double correlation method. This double correlation method is a focal plane version of the well-known Knox-Thompson method used in speckle interferometry. It is shown that SNR for parity detection using double correlation depends linearly on binary separation. This new result was entirely missed by previous analytical calculations dealing with a point source. It is concluded that, for magnitudes relevant to the present day speckle interferometry and for binary separations close to the diffraction limit, speckle masking has better SNR for parity detection.
Resumo:
The effect of turbulence on the nonaxisymmetric flux rings of equipartition field strength in bipolar magnetic regions is studied on the basis of the small-scale momentum exchange mechanism and the giant cell drag combined with the Kelvin-Helmholtz drag mechanism. It is shown that the giant cell drag and small-scale momentum exchange mechanism can make equipartition flux loops emerge at low latitudes, in addition to making them exhibit the observed tilts. However, the sizes of the flux tubes have to be restricted to a couple of hundred kilometers. An ad hoc constraint on the footpoints of the flux loops is introduced by not letting them move in the phi direction, and it is found that equipartition fields of any size can be made to emerge at sunspot latitudes with the observed tilts by suitably adjusting the footpoint separations.
Resumo:
We use the BBGKY hierarchy equations to calculate, perturbatively, the lowest order nonlinear correction to the two-point correlation and the pair velocity for Gaussian initial conditions in a critical density matter-dominated cosmological model. We compare our results with the results obtained using the hydrodynamic equations that neglect pressure and find that the two match, indicating that there are no effects of multistreaming at this order of perturbation. We analytically study the effect of small scales on the large scales by calculating the nonlinear correction for a Dirac delta function initial two-point correlation. We find that the induced two-point correlation has a x(-6) behavior at large separations. We have considered a class of initial conditions where the initial power spectrum at small k has the form k(n) with 0 < n less than or equal to 3 and have numerically calculated the nonlinear correction to the two-point correlation, its average over a sphere and the pair velocity over a large dynamical range. We find that at small separations the effect of the nonlinear term is to enhance the clustering, whereas at intermediate scales it can act to either increase or decrease the clustering. At large scales we find a simple formula that gives a very good fit for the nonlinear correction in terms of the initial function. This formula explicitly exhibits the influence of small scales on large scales and because of this coupling the perturbative treatment breaks down at large scales much before one would expect it to if the nonlinearity were local in real space. We physically interpret this formula in terms of a simple diffusion process. We have also investigated the case n = 0, and we find that it differs from the other cases in certain respects. We investigate a recently proposed scaling property of gravitational clustering, and we find that the lowest order nonlinear terms cause deviations from the scaling relations that are strictly valid in the linear regime. The approximate validity of these relations in the nonlinear regime in l(T)-body simulations cannot be understood at this order of evolution.
Resumo:
foam, either stacked together as three layers (MC) or inserted at three different positions (3L) while arranging the stacking sequence during the fabrication of glass fiber-epoxy composites, form the subject of investigation. This stacking variation resulted in a different interfacial area between these foam materials and the glass-epoxy regions in the laminates. This area in designed to be maximum for the 3L variety. The energy of impact being high enough to cause development of the crack in the samples, how the change in interfacial area affects the traverse of the crack front and the failure feature of the laminated composite are reported in the form of photomacrographs in this work. The results point to significant changes for the impact data, like for instance the peak load attained by the different samples, through thickness crack propagation and tensile fracture features on the non-impacted end for the plain variety, separation about the mid-zone for the MC laminates and two or more layer separations for the 3L variety. The separation for the foam-bearing systems occur invariably at the interface and here again one of the (two identical) interfaces only is chosen for the separation.
Resumo:
Epoxy systems containing HTBN rubber material and reinforced with E-glass fibres, exposed to a fixed time duration in three separate media were subjected to compressive mode of deformation. The yield stress and fractographic features noted on the compression failed samples are reported in this work. The experiment reveals that the seawater exposed sample exhibits a drop in strength compared to dry (unexposed) sample. This kind of drop is maintained if the media is changed from seawater to distilled water. When HCl is included in seawater. the experiment shows a small rise in strength value. These changes have been attributed to various factors like medium ingress into samples assisting interface failure, the larger-sized Cl- influencing the extent of diffusion of medium into system and finally their participation in the deformation phenomena. The fractographic features reveal interface separations that show either scattered debris or a cleaner surface or display a whitish-coated matrix region depending on whether the tests are done on unexposed samples or on ones following the immersion in the media.
Resumo:
This work is concerned with the interaction of a source-sink pair. The main parameters of the problem are source and sink flow rates, the axial and lateral separations of the source and sink, and the angle between the axes of source and sink. Of concern is the percentage of source fluid that enters the sink as a function of these parameters. The experiments have been carried using the source nozzle diameter of 6 mm and the sink pipe diameter of two sizes: 10 mm and 20 mm. The Reynolds numbers of the source jet is about 3200. The main diagnostics are flow visualization using dye, laser induced fluorescence (LIF), particle streak photographs and particle image velocimetry (Ply). To obtain the removal effectiveness (that is percentage of source fluid that is going through the sink pipe), titration method is used. The sink diameter and the angle between source and the sink axes do not influence efficiencies as do the sink flow rate and the lateral separation. Data from experiments have been consolidated so that these results can be used for designing sinks for removal of heat and pollutants. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Te-rich Si15Te85-xGex (1 <= x <= 11) glasses are found to exhibit an anomalous phase separations with germanium composition. The structural transformation of o-GeTe crystalline phase from o-GeTe with a = 11.76 angstrom, b = 16.59 angstrom, c = 17.44 angstrom, to high pressure o-GeTe with a new reduced lattice parameters a = 10.95 angstrom, b = 4.03 angstrom, c = 4.45 angstrom, is observed at T-c3 in the composition range 6 <= x <= 11. Raman studies support the possible existence of high pressure o-GeTe phase which is observed in X-ray diffraction experiments. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3696862]
Resumo:
This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6Â mm and the sink pipe diameter is either 10 or 20Â mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO 4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.
Resumo:
Plasmonic interactions in a well-defined array of metallic nanoparticles can lead to interesting optical effects, such as local electric field enhancement and shifts in the extinction spectra, which are of interest in diverse technological applications, including those pertaining to biochemical sensing and photonic circuitry. Here, we report on a single-step wafer scale fabrication of a three-dimensional array of metallic nanoparticles whose sizes and separations can be easily controlled to be anywhere between fifty to a few hundred nanometers, allowing the optical response of the system to be tailored with great control in the visible region of the spectrum. The substrates, apart from having a large surface area, are inherently porous and therefore suitable for optical sensing applications, such as surface enhanced Raman scattering, containing a high density of spots with enhanced local electric fields arising from plasmonic couplings.