974 resultados para SEPARATION EFFICIENCY


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to introduce specificity for Mycobacterium avium subsp. paratuberculosis prior to a phage amplification assay, various magnetic-separation approaches, involving either antibodies or peptides, were evaluated in terms of the efficiency of capture (expressed as a percentage) of M. avium subsp. paratuberculosis cells and the percentage of nonspecific binding by other Mycobacterium spp. A 50:50 mixture of MyOne Tosylactivated Dynabeads coated with the chemically synthesized M. avium subsp. paratuberculosis-specific peptides biotinylated aMp3 and biotinylated aMptD (i.e., peptide-mediated magnetic separation [PMS]) proved to be the best magnetic-separation approach for achieving 85 to 100% capture of M. avium subsp. paratuberculosis and minimal (<1%) nonspecific recovery of other Mycobacterium spp. (particularly if beads were blocked with 1% skim milk before use) from broth samples containing 103 to 104 CFU/ml. When PMS was coupled with a recently optimized phage amplification assay and used to detect M. avium subsp. paratuberculosis in 50-ml volumes of spiked milk, the mean 50% limit of detection (LOD50) was 14.4 PFU/50 ml of milk (equivalent to 0.3 PFU/ml). This PMS-phage assay represents a novel, rapid method for the detection and enumeration of viable M. avium subsp. paratuberculosis organisms in milk, and potentially other sample matrices, with results available within 48 h.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In an attempt to optimize a high yield, high efficiency artificial photosynthetic protein we have discovered unique energy and spatial architecture limits which apply to all light-activated photosynthetic systems. We have generated an analytical solution for the time behavior of the core three cofactor charge separation element in photosynthesis, the photosynthetic cofactor triad, and explored the functional consequences of its makeup including its architecture, the reduction potentials of its components, and the absorption energy of the light absorbing primary-donor cofactor. Our primary findings are two: First, that a high efficiency, high yield triad will have an absorption frequency more than twice the reorganization energy of the first electron transfer, and second, that the relative distance of the acceptor and the donor from the primary-donor plays an important role in determining the yields, with the highest efficiency, highest yield architecture having the light absorbing cofactor closest to the acceptor. Surprisingly, despite the increased complexity found in natural solar energy conversion proteins, we find that the construction of this central triad in natural systems matches these predictions. Our analysis thus not only suggests explanations for some aspects of the makeup of natural photosynthetic systems, it also provides specific design criteria necessary to create high efficiency, high yield artificial protein-based triads.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The world's rising demand of energy turns the development of sustainable and more efficient technologies for energy production and storage into an inevitable task. Thermoelectric generators, composed of pairs of n-type and p-type semiconducting materials, di¬rectly transform waste heat into useful electricity. The efficiency of a thermoelectric mate¬rial depends on its electronic and lattice properties, summarized in its figure of merit ZT. Desirable are high electrical conductivity and Seebeck coefficients, and low thermal con¬ductivity. Half-Heusler materials are very promising candidates for thermoelectric applications in the medium¬ temperature range such as in industrial and automotive waste heat recovery. The advantage of Heusler compounds are excellent electronic properties and high thermal and mechanical stability, as well as their low toxicity and elemental abundance. Thus, the main obstacle to further enhance their thermoelectric performance is their relatively high thermal conductivity.rn rnIn this work, the thermoelectric properties of the p-type material (Ti/Zr/Hf)CoSb1-xSnx were optimized in a multistep process. The concept of an intrinsic phase separation has recently become a focus of research in the compatible n-type (Ti/Zr/Hf)NiSn system to achieve low thermal conductivities and boost the TE performance. This concept is successfully transferred to the TiCoSb system. The phase separation approach can form a significant alternative to the previous nanostructuring approach via ball milling and hot pressing, saving pro¬cessing time, energy consumption and increasing the thermoelectric efficiency. A fundamental concept to tune the performance of thermoelectric materials is charge carrier concentration optimization. The optimum carrier concentration is reached with a substitution level for Sn of x = 0.15, enhancing the ZT about 40% compared to previous state-of-the-art samples with x = 0.2. The TE performance can be enhanced further by a fine-tuning of the Ti-to-Hf ratio. A correlation of the microstructure and the thermoelectric properties is observed and a record figure of merit ZT = 1.2 at 710°C was reached with the composition Ti0.25Hf0.75CoSb0.85Sn0.15.rnTowards application, the long term stability of the material under actual conditions of operation are an important issue. The impact of such a heat treatment on the structural and thermoelectric properties is investigated. Particularly, the best and most reliable performance is achieved in Ti0.5Hf0.5CoSb0.85Sn0.15, which reached a maximum ZT of 1.1 at 700°C. The intrinsic phase separation and resulting microstructure is stable even after 500 heating and cooling cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly sodium acrylate (PSA)-coated Magnetic Nanoparticles (PSA-MNPs) were synthesized as smart osmotic draw agent (SMDA) for water desalination by forward osmosis (FO) process. The PSA-coated MNPs demonstrated significantly higher osmotic pressure (~ 30 fold) as well as high FO water flux (~ 2–3 fold) when compared to their polymer (polyelectrolyte) counterpart, even at a very low concentration of ~ 0.13 wt.% in the draw solution. The PSA polymer chain conformation – coiled to extended – demonstrates a significant impact on the availability of the polymer hydrophilic groups in solution which is the driving force to attain higher osmotic pressure and water flux. When an optimum concentration of the polymer was anchored to a NP surface, the polymer chains assume an extended open conformation making the functional hydrophilic groups available to attract water molecules. This in turn boosts the osmotic pressure and FO water flux of the PSA-MNP draw agents. The low concentration of the PSA-MNP osmotic agent and the associated high water flux enhances the cost-effectiveness of our proposed SMDA system. In addition, easier magnetic separation and regeneration of the SMDA also improves its usability making it efficient, cost-effective and environment-friendly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural gas (the main component is methane) has been widely used as a fuel and raw material in industry. Removal of nitrogen (N2) from methane (CH4) can reduce the cost of natural gas transport and improve its efficiency. However, their extremely similar size increases the difficulty of separating N2 from CH4. In this study, we have performed a comprehensive investigation of N2 and CH4 adsorption on different charge states of boron nitride (BN) nanocage fullerene, B36N36, by using a density functional theory approach. The calculational results indicate that B36N36 in the negatively charged state has high selectivity in separating N2 from CH4. Moreover, once the extra electron is removed from the BN nanocage, the N2 will be released from the material. This study demonstrates that the B36N36 fullerene can be used as a highly selective and reusable material for the separation of N2 from CH4. The study also provides a clue to experimental design and application of BN nanomaterials for natural gas purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Separation of printed text blocks from the non-text areas, containing signatures, handwritten text, logos and other such symbols, is a necessary first step for an OCR involving printed text recognition. In the present work, we compare the efficacy of some feature-classifier combinations to carry out this separation task. We have selected length-nomalized horizontal projection profile (HPP) as the starting point of such a separation task. This is with the assumption that the printed text blocks contain lines of text which generate HPP's with some regularity. Such an assumption is demonstrated to be valid. Our features are the HPP and its two transformed versions, namely, eigen and Fisher profiles. Four well known classifiers, namely, Nearest neighbor, Linear discriminant function, SVM's and artificial neural networks have been considered and efficiency of the combination of these classifiers with the above features is compared. A sequential floating feature selection technique has been adopted to enhance the efficiency of this separation task. The results give an average accuracy of about 96.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we have prepared two donor-acceptor-donor (D-A-D) pi-conjugated oligomers to investigate the effect of phase separation on the performance of bulk heterojunction (BHJ) solar cells. These charge transfer low band gap pi-conjugated oligomers (TTB and NMeTTB) were synthesized by Knoevenagel condensation of terthiophenecarbaldehyde and barbiturate appended pyran derivative. The thin film morphology of both the oligomers and along with electron acceptor 6,6]-phenyl-C60-butyric acid methyl ester (PC61BM) was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The blend of NMeTTB and PC61BM thin film yield highly ordered thin film, whereas there was clear phase separation between TTB and PC61BM in thin film. The BHJ solar cell was fabricated using a blend of NMeTTB and TTB with PC61BM acceptor in 1:1 ratio as active layer, and a power conversion efficiency of 1.8% was obtained. This device characteristic was compared with device having TTB:PC61BM as active layer, and large difference is observed in photocurrents. This poor performance of TTB in BHJ devices was attributed to the difference in the nanoscale morphology of the corresponding derivatives. We rationalize our findings based on the low charge carrier mobility in organic field-effect transistors and miscibility/phase separation parameter of binary components (oligomers and PC61BM) in the active layer of bulk heterojunction solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-A -vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe-mineral interaction are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of electron-hole pair recombination is the most desirable solution for stimulating photocatalytic activity in semiconductor nanostructures. To implement this, herein we study the photocatalytic efficiency of elemental Au, Pd and bimetallic AuPd nanoalloy decorated pristine and reduced graphene oxide (RGO) hybridized ZnO nanorods for degrading rhodamine 6G (R6G) dye. Fabrication of Au, Pd and AuPd nanoalloy on pristine and RGO modified ZnO nanorods is simple and more importantly surfactant or polymer free. AuPd nanoalloyed ZnO-RGO nanocomposites exhibit higher photocatalytic activity for degrading dye than both Au and Pd hybridized ones, indicating the promising potential of bimetallic nanoalloys over elemental components. A non-monotonic dependence on the composite composition was found by analyzing photodegradation efficiency of a series of ZnO-RGO-AuPd hybrid nanostructures with different weight percentages of RGO. The hybrid nanostructure ZnO-RGO (5 wt%)-AuPd (1 wt%) exhibits highest photodegradation efficiency (similar to 100% degradation in 20 min) with an improvement in rate constant (k) by a factor of 10 compared to that of the ZnO-RGO nanocomposite. The enhancement of the photocatalytic activity is attributed to the better separation of photogenerated charge carriers in photocatalysts thereby suggesting possible usefulness in a broad range of applications, such as sensing, photocatalysis and solar energy conversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gathering systems of crude oil are greatly endangered by the fine sand and soil in oil. Up to now , how to separate sand from the viscid oil is still a technical problem for oil production home or abroad. Recently , Institute of Mechanics in Chinese Academy of Sciences has developed a new type of oil-sand separator , which has been applied successfully in oil field in situ. In this paper, the numerical method of vortex-stream function is used to predict the liquid-solid separating course and the efficiency for this oil-sand separator. Results show that the viscosity and particle diameter have much influence on the particle motion. The calculating separating efficiency is compared with that of experiment and indicates that this method can be used to model the complex two-phase flow in the separator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anatomical and morphometric (shape indices, contour descriptors and otolith weight) characterizations of sagittal otoliths were investigated in 13 species of Lutjanus spp. inhabiting the Persian Gulf. This is the first study that compares the efficiency of three different image analysis techniques for discriminating species based on the shape of the outer otolith contour, including elliptical Fourier descriptors (EFD), fast Fourier transform (FFT) and wavelet transform (WT). Sagittal otoliths of snappers are morphologically similar with some small specific variations. The use of otolith contour based on wavelets (WT) provided the best results in comparison with the two other methods based on Fourier descriptors, but only the combination of the all three methods (EFD, FFT and WT) was useful to obtain a robust classification of species. The species prediction improved when otolith weight was included. In relation to the shape indices, only the aspect ratio provided a clear grouping of species. Also, another study was carried on to test the possibility of application of shape analysis and comparing otolith contour of otoliths of Lutjanus johnii from Persian Gulf and Oman Sea to identify potential stocks. The results showed the otoliths have differences in contour shape and can be contribute to two different stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work examines the basic feasibility of the net-zero-balance TRU multi-recycling concept in which trivalent lanthanide fission products (Ln(III) ) are not separated from trivalent actinides (An(III)). The TRU together with Eu and Gd isotopes are recycled in a standard PWR using Combined Non-Fertile and UO2 (CONFU) assembly design. The assembly assumes a heterogeneous structure where about 20% of U02 fuel pins on the assembly periphery are replaced with Inert Matrix Fuel (IMF) pins hosting TRU, Gd, and Eu generated in the previous cycles. The 2-D neutronic analysis show potential feasibility of Ln / An recycling in PWR using CONFU assembly. Recycling of Ln reduces the fuel cycle length by about 30 effective full power days (EFPD) and TRU destruction efficiency by about 5%. Power peaking factors and reactivity feedback coefficients are close to those of CONFU assembly without Ln recycling.