944 resultados para SBA-15


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equine antivenom is considered the only treatment for animal-generated envenomations, but it is costly. The study aimed to produce Apis mellifera (Africanized honeybee) and Crotalus durissus terrificus (C.d.t.) antivenoms using nanostructured silica (SBA-15) as adjuvant and cobalt-60 (60Co)-detoxified venoms utilizing young sheep. Natural and 60Co-irradiated venoms were employed in four different hyperimmunization protocols. Thus, 8 groups of 60- to 90-d-old sheep were hyperimmunized, enzyme-linked immunosorbent assay (ELISA) serum titers collected every 14 d were assessed clinically daily, and individual weight were measured, until d 84. Incomplete Freund's (IFA) and nanostructured silica (SBA15) adjuvants were compared. The lethal dose (LD50) for both venoms was determined following intraperitoneal (ip) administration to mice. High-performance liquid chromatography on reversed phase (HPLC-RP) was used also to measure the 60Co irradiation effects on Apis venom. At the end of the study, sheep were killed in a slaughterhouse. Kidneys were histologically analyzed. LD50 was 5.97 mg/kg Apis and 0.07 mg/kg C.d.t. for native compared to 13.44 mg/kg Apis and 0.35 mg/kg C.d.t. for irradiated venoms. HPLC revealed significant differences in chromatographic profiles between native and irradiated Apis venoms. Native venom plus IFA compared with SBA-15 showed significantly higher antibody titers for both venoms. Apis-irradiated venom plus IFA or SBA-15 displayed similar antibody titers but were significantly lower when compared with native venom plus IFA. Weight gain did not differ significantly among all groups. 60Co irradiation decreased toxicity and maintained venom immunogenic capacity, while IFA produced higher antibody titers. SBA-15 was able to act as an adjuvant without producing adverse effects. Hyperimmunization did not affect sheep weight gain, which would considerably reduce the cost of antiserum production, as these sheep were still approved for human consumption even after being subjected to hyperimmunization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bimetallic oxidation catalyst has been synthesized via wet impregnation of copper and iron over a mesoporous SBA-15 silica support. Physicochemical properties of the resulting material were characterized by XRD, N2 physisorption, DRUVS, FTIR, Raman, SEM and HRTEM, revealing the structural integrity of the parent SBA-15, and presence of highly dispersed Cu and Fe species present as CuO and Fe2O3. The CuFe/SBA-15 bimetallic catalyst was subsequently utilized for the oxidative degradation of N,N-diethyl-p-phenyl diamine (DPD) employing a H2O2 oxidant in aqueous solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low energy route for the removal of Pluronic P123 surfactant template during the synthesis of SBA-15 mesoporous silicas is explored. The conventional reflux of the hybrid inorganic-organic intermediate formed during co-condensation routes to Pr-SOH-SBA-15 is slow, utilises large solvent volumes, and requires 24 h to remove ∼90% of the organic template. In contrast, room temperature ultrasonication in a small methanol volume achieves the same degree of template extraction in only 5 min, with a 99.9% energy saving and 90% solvent reduction, without compromising the textural, acidic or catalytic properties of the resultant Pr-SOH-SBA-15. © 2014 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical macroporous-mesoporous SBA-15 silicas have been synthesised via dual-templating routes employing liquid crystalline surfactants and polystyrene beads. These offer high surface areas and well-defined, interconnecting macro- and mesopore networks with respective narrow size distributions around 300 nm and 3-5 nm for polystyrene:tetraethoxysilane ratios ≥2:1. Subsequent functionalisation with propylsulfonic acid yields the first organized, macro-mesoporous solid acid catalyst. The enhanced mass transport properties of these new bi-modal solid acid architectures confer significant rate enhancements in the transesterification of bulky glyceryl trioctanoate, and esterification of long chain palmitic acid, over pure mesoporous analogues. This paves the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion. © 2010 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The utility of a hierarchically ordered nanoporous SBA-15 architecture, comprising 270 nm macropores and 5 nm mesopores (MM-SBA-15), for the catalytic aerobic selective oxidation of sterically challenging allylic alcohols is shown. Detailed bulk and surface characterization reveals that incorporation of complementary macropores into mesoporous SBA-15 enhances the dispersion of sub 2 nm Pd nanoparticles and thus their degree of surface oxidation. Kinetic profiling reveals a relationship between nanoparticle dispersion and oxidation rate, identifying surface PdO as the catalytically active phase. Hierarchical nanoporous Pd/MM-SBA-15 outperforms mesoporous analogues in allylic alcohol selective oxidation by (i) stabilizing PdO nanoparticles and (ii) dramatically improving in-pore diffusion and access to active sites by sesquiterpenoid substrates such as farnesol and phytol. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous silica SBA-15 was synthesised by the true liquid crystal templating method, yielding a material with reduced microporosity compared with that produced by the more conventional liquid crystal templating route. Further advancements allow the generation of metal nanoparticle-doped SBA-15 materials with well-defined metal particle sizes, which posses potential as catalytic systems. © 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present the first application of pore-expanded SBA-15 in heterogeneous catalysis. Pore expansion over the range 6-14 nm confers a striking activity enhancement towards fatty acid methyl ester (FAME) synthesis from triglycerides (TAG), and free fatty acid (FFA), attributed to improved mass transport and acid site accessibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arenesulfonic-acid functionalized SBA-15 materials have been used in the production of biodiesel from low grade oleaginous feedstock. These materials display an outstanding catalytic activity, being able to promote the transformation of crude palm oil with methanol into fatty acid methyl esters with high yield (85%) under mild reaction conditions. However, high sensitivity of the catalyst against poisoning by different substances has also been detected. Thus, alkaline metal cations, such as sodium or potassium exert a negative influence on the catalytic activity of these materials, being necessary amounts around 500 ppm of sodium in the reaction media to decrease the catalytic activity of these materials to a half of its initial value in just two reaction runs. The deactivation of arenesulfonic acid functionalized SBA-15 materials seems to occur in this case by ion exchange of the acid protons at the sulfonic groups. Organic unsaponifiable compounds like lecithin or retinol also induce a negative influence in the catalytic activity of these sulfonic acid-based materials, though not so intense as in the case of alkaline metals. The deactivating mechanism associated to the influence of the organic compounds seems to be linked to the adsorption of such substances onto the catalytic acid sites as well as on the silica surface. The accumulation of lecithin in the surface of catalyst, observed by means of thermogravimetric analysis, suggest the creation of a strong interaction, probably by ion pair, between this compound and the sulfonic acid group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple grafting protocol is reported which affords a ten-fold enhancement in acid site density of mesoporous sulfonic acid silicas compared to conventional syntheses, offering improved process efficiency and new opportunities for tailored supported solid acids in sustainable chemistry. This journal is

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of mesoporous SBA-15 supported H3PW12O40 (HPW) catalysts were synthesized by wet-impregnation and compared with fumed silica analogues for the solventless isomerization of α-pinene under mild conditions. Structural and acidic properties of supported HPW materials were characterized by powder XRD, HRTEM, XPS, TGA, N2 porosimetry, DRIFTS, and ammonia and propylamine chemisorption and TPD. The high area, mesoporous SBA-15 architecture facilitates the formation of highly dispersed (isolated or low dimensional) HPW clusters and concomitant high acid site densities (up to 0.54 mmol g−1) relative to fumed silica wherein large HPW crystallites are formed even at low HPW loadings. α-Pinene exhibits a volcano dependence on HPW loading over the SBA-15 support due to competition between the number and accessibility of acid sites to the non-polar reactant, with the superior acid site accessibility for HPW/SBA-15 conferring a 10-fold rate enhancement with respect to HPW/fumed silica and pure HPW. Monocyclic limonene and terpinolene products are favoured over polycyclic camphene and β-pinene by weaker polyoxometallate analogues over SBA-15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the mild detemplation method, based on Fenton chemistry (with and without previous solvent extraction), and calcination was evaluated by the drug uptake capacity of SBA-15 materials. A number of characterization techniques were applied for evaluation and comparison of the materials properties such as TGA, CNH, N2 physisorption and 29Si NMR. The mild Fenton detemplation method rendered a nearly pristine SBA-15 without structural shrinkage, low residual template, improved surface area, pore volume and silanol concentration. The drug (ibuprofen) adsorption experiments were carried out by solution immersion in powdery form. The mild detemplated samples experienced an enhanced uptake that could be explained by the enhanced density of silanols (mmol/g), originated from the absence of calcination in the Fenton approaches. © 2014 Elsevier B.V.