950 resultados para S-turn motif
Resumo:
The riboregulator RsmY of Pseudomonas fluorescens strain CHA0 is an example of small regulatory RNAs belonging to the global Rsm/Csr regulatory systems controlling diverse cellular processes such as glycogen accumulation, motility, or formation of extracellular products in various bacteria. By binding multiple molecules of the small regulatory protein RsmA, RsmY relieves the negative effect of RsmA on the translation of several target genes involved in the biocontrol properties of strain CHA0. RsmY and functionally related riboregulators have repeated GGA motifs predicted to be exposed in single-stranded regions, notably in the loops of hairpins. The secondary structure of RsmY was corroborated by in vivo cleavage with lead acetate. RsmY mutants lacking three or five (out of six) of the GGA motifs showed reduced ability to derepress the expression of target genes in vivo and failed to bind the RsmA protein efficiently in vitro. The absence of GGA motifs in RsmY mutants resulted in reduced abundance of these transcripts and in a shorter half-life (< or = 6 min as compared with 27 min for wild type RsmY). These results suggest that both the interaction of RsmY with RsmA and the stability of RsmY strongly depend on the GGA repeats and that the ability of RsmY to interact with small regulatory proteins such as RsmA may protect this RNA from degradation.
Resumo:
Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3′UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In this work, we report the characterization of the Drosophila melanogaster SBP2 (dSBP2). Despite its shorter length, it retained the same selenoprotein synthesis-promoting capabilities as the mammalian counterpart. However, a major difference resides in the SECIS recognition pattern: while human SBP2 (hSBP2) binds the distinct form 1 and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only. In addition, we report the identification of a K (lysine)-rich domain in all SBP2s, essential for SECIS and 60S ribosomal subunit binding, differing from the well-characterized L7Ae RNA-binding domain. Swapping only five amino acids between dSBP2 and hSBP2 in the K-rich domain conferred reversed SECIS-binding properties to the proteins, thus unveiling an important sequence for form 1 binding.
Resumo:
Four-lane undivided roadways in urban areas can experience a degradation of service and/or safety as traffic volumes increase. In fact, the existence of turning vehicles on this type of roadway has a dramatic effect on both of these factors. The solution identified for these problems is typically the addition of a raised median or two-way left-turn lane (TWLTL). The mobility and safety benefits of these actions have been proven and are discussed in the “Past Research” chapter of this report along with some general cross section selection guidelines. The cost and right-of-way impacts of these actions are widely accepted. These guidelines focus on the evaluation and analysis of an alternative to the typical four-lane undivided cross section improvement approach described above. It has been found that the conversion of a four-lane undivided cross section to three lanes (i.e., one lane in each direction and a TWLTL) can improve safety and maintain an acceptable level of service. These guidelines summarize the results of past research in this area (which is almost nonexistent) and qualitative/quantitative before-and-after safety and operational impacts of case study conversions located throughout the United States and Iowa. Past research confirms that this type of conversion is acceptable or feasible in some situations but for the most part fails to specifically identify those situations. In general, the reviewed case study conversions resulted in a reduction of average or 85th percentile speeds (typically less than five miles per hour) and a relatively dramatic reduction in excessive speeding (a 60 to 70 percent reduction in the number of vehicles traveling five miles per hour faster than the posted speed limit was measured in two cases) and total crashes (reductions between 17 to 62 percent were measured). The 13 roadway conversions considered had average daily traffic volumes of 8,400 to 14,000 vehicles per day (vpd) in Iowa and 9,200 to 24,000 vehicles per day elsewhere. In addition to past research and case study results, a simulation sensitivity analysis was completed to investigate and/or confirm the operational impacts of a four-lane undivided to three-lane conversion. First, the advantages and disadvantages of different corridor simulation packages were identified for this type of analysis. Then, the CORridor SIMulation (CORSIM) software was used x to investigate and evaluate several characteristics related to the operational feasibility of a four-lane undivided to three-lane conversion. Simulated speed and level of service results for both cross sections were documented for different total peak-hour traffic, access densities, and access-point left-turn volumes (for a case study corridor defined by the researchers). These analyses assisted with the identification of the considerations for the operational feasibility determination of a four -lane to three-lane conversion. The results of the simulation analyses primarily confirmed the case study impacts. The CORSIM results indicated only a slight decrease in average arterial speed for through vehicles can be expected for a large range of peak-hour volumes, access densities, and access-point left-turn volumes (given the assumptions and design of the corridor case study evaluated). Typically, the reduction in the simulated average arterial speed (which includes both segment and signal delay) was between zero and four miles per hour when a roadway was converted from a four-lane undivided to a three-lane cross section. The simulated arterial level of service for a converted roadway, however, showed a decrease when the bi-directional peak-hour volume was about 1,750 vehicles per hour (or 17,500 vehicles per day if 10 percent of the daily volume is assumed to occur in the peak hour). Past research by others, however, indicates that 12,000 vehicles per day may be the operational capacity (i.e., level of service E) of a three-lane roadway due to vehicle platooning. The simulation results, along with past research and case study results, appear to support following volume-related feasibility suggestions for four-lane undivided to three-lane cross section conversions. It is recommended that a four-lane undivided to three-lane conversion be considered as a feasible (with respect to volume only) option when bi-directional peak-hour volumes are less than 1,500 vehicles per hour, but that some caution begin to be exercised when the roadway has a bi-directional peak-hour volume between 1,500 and 1,750 vehicles per hour. At and above 1,750 vehicles per hour, the simulation indicated a reduction in arterial level of service. Therefore, at least in Iowa, the feasibility of a four-lane undivided to three-lane conversion should be questioned and/or considered much more closely when a roadway has (or is expected to have) a peak-hour volume of more than 1,750 vehicles. Assuming that 10 percent of the daily traffic occurs during the peak-hour, these volume recommendations would correspond to 15,000 and 17,500 vehicles per day, respectively. These suggestions, however, are based on the results from one idealized case xi study corridor analysis. Individual operational analysis and/or simulations should be completed in detail once a four-lane undivided to three-lane cross section conversion is considered feasible (based on the general suggestions above) for a particular corridor. All of the simulations completed as part of this project also incorporated the optimization of signal timing to minimize vehicle delay along the corridor. A number of determination feasibility factors were identified from a review of the past research, before-and-after case study results, and the simulation sensitivity analysis. The existing and expected (i.e., design period) statuses of these factors are described and should be considered. The characteristics of these factors should be compared to each other, the impacts of other potentially feasible cross section improvements, and the goals/objectives of the community. The factors discussed in these guidelines include • roadway function and environment • overall traffic volume and level of service • turning volumes and patterns • frequent-stop and slow-moving vehicles • weaving, speed, and queues • crash type and patterns • pedestrian and bike activity • right-of-way availability, cost, and acquisition impacts • general characteristics, including - parallel roadways - offset minor street intersections - parallel parking - corner radii - at-grade railroad crossings xii The characteristics of these factors are documented in these guidelines, and their relationship to four-lane undivided to three-lane cross section conversion feasibility identified. This information is summarized along with some evaluative questions in this executive summary and Appendix C. In summary, the results of past research, numerous case studies, and the simulation analyses done as part of this project support the conclusion that in certain circumstances a four-lane undivided to three-lane conversion can be a feasible alternative for the mitigation of operational and/or safety concerns. This feasibility, however, must be determined by an evaluation of the factors identified in these guidelines (along with any others that may be relevant for a individual corridor). The expected benefits, costs, and overall impacts of a four-lane undivided to three-lane conversion should then be compared to the impacts of other feasible alternatives (e.g., adding a raised median) at a particular location.
Resumo:
This paper links different political liberal theories, considered from the perspective of their moral ontology, with federal democracies. After giving a brief description of these theories, I discuss their relationship with the theoretical and institutional models of federalism. As methodological tools, the paper introduces some Hegel’s political concepts and deals with their potential application to the analysis of federalism, taken into account the case of minorities in multinational democracies. I postulate the need for a moral and institutional refinement of liberal-democratic patterns that is better able to accommodate national pluralism than has so far been achieved by traditional constitutionalism.
Resumo:
Integrin adhesion receptors consist of non-covalently linked alpha and beta subunits each of which contains a large extracellular domain, a single transmembrane domain and a short cytoplasmic tail. Engaged integrins recruit to focal structures globally termed adhesion complexes. The cytoplasmic domain of the beta subunit is essential for this clustering. beta1 and beta3 integrins can recruit at distinct cellular locations (i.e. fibrillar adhesions vs focal adhesions, respectively) but it is not clear whether individual beta subunit cytoplasmic and transmembrane domains are by themselves sufficient to drive orthotopic targeting to the cognate adhesion complex. To address this question, we expressed full-length beta3 transmembrane anchored cytoplasmic domains and truncated beta3 cytoplasmic domains as GFP-fusion constructs and monitored their localization in endothelial cells. Membrane-anchored full-length beta3 cytoplasmic domain and a beta3 mutant lacking the NXXY motif recruited to adhesion complexes, while beta3 mutants lacking the NPXY and NXXY motifs or the transmembrane domain did not. Replacing the natural beta subunit transmembrane domain with an unrelated (i.e. HLA-A2 alpha chain) transmembrane domain significantly reduced recruitment to adhesion complexes. Transmembrane anchored beta3 and cytoplasmic domain constructs, however, recruited without discrimination to beta1- and beta3-rich adhesions complexes. These findings demonstrate that membrane anchorage and the NPXY (but not the NXXY) motif are necessary for beta3 cytoplasmic domain recruitment to adhesion complexes and that the natural transmembrane domain actively contributes to this recruitment. The beta3 transmembrane and cytoplasmic domains alone are insufficient for orthotopic recruitment to cognate adhesion complexes.
Resumo:
Modern scholarship often discusses Roman women in terms of their difference from their male counterparts, frequently defining them as 'other'. This book shows how Roman male writers at the turn of the first century actually described women as not so different from men: the same qualities and abilities pertaining to the domains of parenthood, intellect and morals are ascribed by writers to women as well as to men. There are two voices, however: a traditional, ideal voice and an individual, realistic voice. This creates a duality of representations of women, which recurs across literary genres and reflects a duality of mentality. How can we interpret the paradoxical information about Roman women given by the male-authored texts? How does this duality of mentality inform us about gender roles and gender hierarchy? This work analyses well-known, as well as overlooked, passages from the writings of Pliny the Younger, Tacitus, Suetonius, Quintilian, Statius, Martial and Juvenal and sheds new light on Roman views of women and their abilities, on the notions of private and public and on conjugal relationships. In the process, the famous sixth satire of Juvenal is revisited and its topic reassessed, providing further insights into the complex issues of gender roles, marriage and emotions. By contrasting representations of women across a broad spectrum of literary genres, this book provides consistent findings that have wide significance for the study of Latin literature and the social history of the late first and early second centuries.
Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif.
Resumo:
To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.
Resumo:
Cell polarity is an essential property of most cell types and relies on a dynamic cytoskeleton of actin filaments and microtubules. In rod-shaped S. pombe cells microtubules are organized along the length of the cell and transport polarity factors to cell tips to regulate cell polarity. An important cell polarity factor is the protein Tea4, which is responsible for correct cell morphogenesis and bipolar growth. During my research I confirmed the known transport mechanism of Tea4 and I also showed alternative localization and anchoring mechanisms at the cell ends. Tea4 contains a conserved SH3 domain, the function of which was unknown and my results show that the SH3 domain of Tea4 is essential for Tea4 function in vivo. First, cells with tea4SH3 mutations show aberrant cell shapes and monopolar growth patterns similar to tea4A and in addition SH3 domain is important for proper localization of multiple cell polarity proteins. Second, I showed that Tea4 associates with Type 1 Phosphatase Dis2 through both its SH3 domain and an RVxF motif. Tea4 also binds the DYRK kinase Pomi through its SH3 domain. In addition Tea4 is proposed to promote the local dephosphorylation of Pomi by Dis2 to induce the formation of a cortical gradient from cell ends essential for cell size homeostasis. Polarized growth is also controlled by cell tip-localized Cdc42. This Rho- family GTPase is activated by the Guanine Exchange Factors Gef1 and Scd1 and inactivated by the Rho GTPase Activating Protein Rga4. In this study, I investigated the mechanisms of how Tea4 promotes Cdc42 activation. My work suggests that Tea4 promotes the local exclusion of Rga4, which in turn allows the accumulation of active Cdc42, which may result in growth. Exclusion of Rga4 by Tea4 is likely to be mediated by Dis2-dependent dephosphorylation. These results suggest a molecular pathway that links the microtubule- associated factor Tea4 with Cdc42 to promote cell polarization and morphogenesis. - La polarité cellulaire est une propriété essentielle de la plupart des types cellulaires et s'appuie sur une dynamique des cytosquelettes d'actine et de microtubules. Dans les cellules en forme de bâtonnet de S. pombe les microtubules sont alignés selon l'axe longitudinal de la cellule et les facteurs de polarité transportés aux extrémité cellulaires afin de réguler la polarité cellulaire. Un facteur important de polarité cellulaire est la protéine Tea4, qui est responsable de la morphogenèse des cellules et leur croissance bipolaire. Au cours de mes recherches, j'ai confirmé les mécanismes connus de transport de Tea4 et j'ai aussi mis en évidence d'autres mechanismes de localisation et d'ancrage de Tea4 aux extrémités cellulaires. Tea4 contient un domaine SH3 conservé, dont la fonction était inconnue et mes résultats montrent que le domaine SH3 est essentiel pour la fonction de Tea4 in vivo. Tout d'abord, les cellules avec des mutations tea4sm ont des formes aberrantes et leur croissance est monopolaire de manière similaire au mutant tea4A. De plus ce domaine SH3 est important pour la localisation correcte de plusieurs protéines de polarité cellulaire. Deuxièmement, j'ai montré que Tea4 s'associe avec la Phosphatase de Type-1 Dis2 par son domaine SH3 et un motif RVxF. Tea4 se lie également la kinase DYRK Pomi par son domaine SH3. De plus, Tea4 pourrait favoriser la déphosphorylation locale de Pomi par Dis2 afin d'induire la formation d'un gradient cortical de Pomi essentiel pour l'homéostasie de la longueur des cellules. La croissance polarisée est également contrôlée par la protéine Cdc42 localisée aux extrémités cellulaires. Cette GTPase de la famille de Rho GTPase est activée par les facteurs échange de guanine Gef1 et Scd1 et inactivée par la protéine "Rho GTPase activating" Rga4. Dans cette étude, j'ai étudié les mécanismes d' activation de Cdc42 par Tea4. Mes résultats suggèrent que Tea4 favorise l'exclusion locale de Rga4, ce qui permet l'accumulation de Cdc42 active, nécessaire à la croissance. L' exclusion de Rga4 par Tea4 est vraisemblablement médiée par une déphosphorylation Dis2- dépendente. Ces résultats suggèrent une voie moléculaire qui lie le facteur associé aux microtubules Tea4 à Cdc42 pour promouvoir la polarisation cellulaire et la morphogenèse. - Cell polarity is important for several essential biological functions such as generation of distinct cell fates during development and function of differentiated cells. Defective cell polarity has been related to uncontrolled cell division and subsequently to cancer initiation. Cell polarity depends on a functional cytoskeleton that consists of actin filaments and microtubules, which maintains cell shape, helps cellular motion, enables intracellular protein transport and plays a vital role in cell division. A component of cytoskeleton is microtubules that regulate cell polarization in diverse cell types. During my research, I worked with Schizosaccharomyces pombe, also named fission yeast, a powerful unicellular model organism that allows combination of genetic, biochemical and microscopic analysis for the proper study of cell polarity. Microtubule-associated protein Tea4 is transported to cell tips where it is thought to organize polarized growth. I showed that Tea4 and its evolutionarily conserved SH3 domain play an important role for maintenance of fission yeast cells shape and growth. Furthermore, Tea4 is responsible for the proper localization of multiple polarity proteins and acts as a mediator to control the local activity of an essential polarity regulator called Cdc42. Thus, my results provide a better understanding of the molecular mechanisms that regulate cell polarity. - La polarité cellulaire est importante pour plusieurs fonctions biologiques essentielles telles que la différenciation cellulaires au cours du développement et de la fonction de cellules différenciées. Les défauts de la polarité cellulaire ont été liés à des divisions cellulaires incontrôlées et à l'initiation de tumeur. La polarité cellulaire dépend d'un cytosquelette fonctionnel, qui maintient la forme des cellules, aide à la migration cellulaire, permet le transport intracellulaire des protéines et joue un rôle essentiel dans la division cellulaire. Un composant du cytosquelette est constitué de microtubules qui régissent la polarisation cellulaire dans divers types cellulaires. Au cours de mes recherches, j'ai travaillé avec Schizosaccharomyces pombe, appelé également levure fissipare, un modèle unicellulare puissant qui permet la combinaison de différentes d'approches expérimentales: génétiques, biochimiques et microscopiques pour l'étude de la polarité cellulaire. La protéine Tea4 associée aux microtubules est transportée aux extrémités cellulaires où elle organise la croissance polarisée. J'ai montré que Tea4 et son domaine conservé SH3 jouent un rôle important pour le maintien de la forme des cellules de levure et leur croissance. De plus, Tea4 est responsable de la localisation correcte de multiples facteurs de polarité et agit comme un médiateur pour contrôler l'activité locale d'un régulateur de polarité essentiel appelé Cdc42. Ainsi, mes résultats permettent de mieux comprendre les mécanismes moléculaires qui régulent la polarité cellulaire.
Resumo:
The ecdysone-responsive DNA sequence of the Drosophila hsp27 gene promoter contains four direct and inverted repeats reminiscent of those that compose the vertebrate palindromic estrogen response element (ERE) and the thyroid hormone/retinoic acid response element (TRE/RRE). Interestingly, a 3 bp substitution in the wild-type Hsp27 ecdysone response element (EcdRE) increases both its similarity with the vertebrate ERE and TRE/RRE and its capacity to confer ecdysone responsiveness to a heterologous promoter. Remarkably, increasing the spacing between the inverted repeats of this strong EcdRE by two nucleotides converts it into an ERE. Inversely, decreasing the spacing between the two inverted repeats of the vertebrate consensus palindromic ERE, from three to one nucleotide, converts it into a functional EcdRE. Thus, the only difference between an invertebrate EcdRE and a vertebrate palindromic ERE or TRE/RRE is in the spacing between the conserved inverted repeated motifs forming these palindromic HREs. The finding that the sequence motif 5'-GGTCA-3' present in the vertebrate ERE and TRE/RRE is also a functionally important characteristic of an invertebrate HRE, suggests that a common ancestor regulatory DNA sequence gave rise to all HREs known so far. We discuss the possibility that this progenitor motif is the GGTCA sequence.
Resumo:
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.
Resumo:
The turn-on process of a multimode VCSEL is investigated from a statistical point of view. Special attention is paid to quantities such as time jitter and bit error rate. The single-mode performance of VCSEL¿s during current modulation is compared to that of edge-emitting lasers.
Resumo:
We present analytical calculations of the turn-on-time probability distribution of intensity-modulated lasers under resonant weak optical feedback. Under resonant conditions, the external cavity round-trip time is taken to be equal to the modulation period. The probability distribution of the solitary laser results are modified to give reduced values of the mean turn-on-time and its variance. Numerical simulations have been carried out showing good agreement with the analytical results.