846 resultados para Rural-urban environments
Resumo:
Drosophila Fallen, 1823 (Diptera, Drosophilidae) is for long a well-established model organism for genetics and evolutionary research. The ecology of these flies, however, has only recently been better studied. Recent papers show that Drosophila assemblies can be used as bioindicators of forested environment degradation. In this work the bioindicator potential of drosophilids was evaluated in a naturally opened environment, a coastal strand-forest (restinga). Data from nine consecutive seasonal collections revealed strong temporal fluctuation pattern of the majority of Drosophila species groups. Drosophila willistoni group was more abundant at autumns, whereas D. cardini and D. tripunctata groups were, respectively, expressive at winters and springs, and D. repleta group at both seasons. The exotic species D. simulans Sturtevant, 1919 (from D. melanogaster group) and Zaprionus indianus Gupta, 1970 were most abundant at summers. Overall, the assemblage structure did not show the same characteristics of forested or urban environments, but was similar to the forests at winters and to cities at summers. This raises the question that this locality may already been under urbanization impact. Also, this can be interpreted as an easily invaded site for exotic species, what might lead to biotic homogenization and therefore can put in check the usage of drosophilid assemblages as bioindicators at open environments.
Resumo:
In this work we propose a new automatic methodology for computing accurate digital elevation models (DEMs) in urban environments from low baseline stereo pairs that shall be available in the future from a new kind of earth observation satellite. This setting makes both views of the scene similarly, thus avoiding occlusions and illumination changes, which are the main disadvantages of the commonly accepted large-baseline configuration. There still remain two crucial technological challenges: (i) precisely estimating DEMs with strong discontinuities and (ii) providing a statistically proven result, automatically. The first one is solved here by a piecewise affine representation that is well adapted to man-made landscapes, whereas the application of computational Gestalt theory introduces reliability and automation. In fact this theory allows us to reduce the number of parameters to be adjusted, and tocontrol the number of false detections. This leads to the selection of a suitable segmentation into affine regions (whenever possible) by a novel and completely automatic perceptual grouping method. It also allows us to discriminate e.g. vegetation-dominated regions, where such an affine model does not apply anda more classical correlation technique should be preferred. In addition we propose here an extension of the classical ”quantized” Gestalt theory to continuous measurements, thus combining its reliability with the precision of variational robust estimation and fine interpolation methods that are necessary in the low baseline case. Such an extension is very general and will be useful for many other applications as well.
Resumo:
The most advanced stage of water erosion, the gully, represents severe problems in different contexts, both in rural and urban environments. In the search for a stabilization of the process in a viable manner it is of utmost importance to assess the efficiency of evaluation methodologies. For this purpose, the efficiency of low-cost conservation practices were tested for the reduction of soil and nutrient losses caused by erosion from gullies in Pinheiral, state of Rio de Janeiro. The following areas were studied: gully recovered by means of physical and biological strategies; gullies in recovering stage, by means of physical strategies only, and gullies under no restoration treatment. During the summer of 2005/2006, the following data sets were collected for this study: soil classification of each of the eroded gully areas; planimetric and altimetric survey; determination of rain erosivity indexes; determination of amount of soil sediment; sediment grain size characteristics; natural amounts of nutrients Ca, Mg, K and P, as well as total C and N concentrations. The results for the three first measurements were 52.5, 20.5, and 29.0 Mg in the sediments from the gully without intervention, and of 1.0, 1.7 and 1.8 Mg from the gully with physical interventions, indicating an average reduction of 95 %. The fully recovered gully produced no sediment during the period. The data of total nutrient loss from the three gullies under investigation showed reductions of 98 % for the recovering gully, and 99 % for the fully recovered one. As for the loss of nutrients, the data indicate a nutrient loss of 1,811 kg from for the non-treated gully. The use of physical and biological interventions made it possible to reduce overall nutrient loss by more than 96 %, over the entire rainy season, as compared to the non-treated gully. Results show that the methods used were effective in reducing soil and nutrient losses from gullies.
Resumo:
The purpose of this report is to describe and evaluate recent efforts in spatial referencing problems and to assess the utility of the developments for urban research, particularly. and to speculate on future developments in the field attempting to structure the issues and review literature and directions of what has become known as "geocoding."
Resumo:
In April 2009, the US government unveiled its blueprint for a national network of high-speed passenger rail (HSR) lines aimed at reducing traffic congestion, cutting national dependence on foreign oil and improving rural and urban environments. In implementing such a program, it is essential to identify the factors that might influence decision making and the eventual success of the HSR project, as well as foreseeing the obstacles that will have to be overcome.
Resumo:
A l’époque de la Nouvelle-France, il n’était pas rare que des enfants de moins d’un an décèdent. Les parents acceptaient avec sagesse et résignation le décès de leurs enfants. Telle était la volonté du Tout-Puissant. Grâce au Registre de la Population du Québec Ancien (R.P.Q.A.) élaboré par le Programme de Recherche en Démographie Historique (P.R.D.H), l’ampleur de la mortalité infantile a pu être mesurée selon plusieurs critères, quelques facteurs déterminants examinés ainsi qu’une composante intergénérationnelle identifiée. Couvrant pour la première fois la totalité de l’existence de la colonie, nos résultats confirment l’importance de la mortalité des enfants aux XVIIe et XVIIIe siècles (entre 140 et 260‰ avant correction pour le sous-enregistrement des décès). Des disparités tangibles ont été constatées entre les sexes, selon le lieu de naissance ainsi que selon la catégorie professionnelle à laquelle appartient le père de l’enfant. L’inégalité des probabilités de survie des tout-petits reflète l’iniquité physiologique entre les genres, avec une surmortalité masculine de l’ordre de 20%, et l’influence de l’environnement dans lequel vit la famille : les petits de la ville de Québec décédaient en moyenne 1,5 à 1,2 fois plus que les petits des campagnes. Montréal, véritable hécatombe pour l’instant inexpliquée, perdait 50% de ses enfants avant l’âge d’un an, ce qui représente 1,9 fois plus de décès infantiles que ceux des enfants de la campagne, qui jouissent malgré tout des bienfaits de leur environnement. Les effets délétères de l’usage de la mise en nourrice, qui touche plus de la moitié des enfants des classes aisées citadines, ravagent leur descendance de plus en plus profondément. L’examen de la mortalité infantile sous ses composantes endogène et exogène révèle que la mortalité de causes exogènes explique au moins 70% de tous les décès infantiles. La récurrence des maladies infectieuses, l’absence d’hygiène personnelle, l’insalubrité des villes constituaient autant de dangers pour les enfants. Dans une perspective davantage familiale et intergénérationnelle où l’enfant est partie intégrante d’une fratrie, des risques significatifs ont été obtenus pour plusieurs caractéristiques déterminantes. Les mères de moins de 20 ans ou de plus de 30 ans, les enfants de rang de naissance supérieur à 8, un intervalle intergénésique inférieur à 21 mois ou avoir son aîné décédé accroissent les risques de décéder avant le premier anniversaire de l’ordre de 10 à 70%, parce que le destin d’un enfant n’est pas indépendant des caractéristiques de sa mère ou de sa fratrie. Nous avons aussi constaté une relation positive entre la mortalité infantile expérimentée par une mère et celle de ses filles. La distribution observée des filles ayant perdu au moins 40% de leurs enfants au même titre que leur mère est 1,3 à 1,9 fois plus grande que celle attendue pour les filles ayant eu 9 enfants et moins ou 10 enfants et plus. Il existerait une transmission intergénérationnelle de la mortalité infantile même lorsqu’on contrôle pour la période et la taille de la famille.
Resumo:
This paper describes benchmark testing of six two-dimensional (2D) hydraulic models (DIVAST, DIVASTTVD, TUFLOW, JFLOW, TRENT and LISFLOOD-FP) in terms of their ability to simulate surface flows in a densely urbanised area. The models are applied to a 1·0 km × 0·4 km urban catchment within the city of Glasgow, Scotland, UK, and are used to simulate a flood event that occurred at this site on 30 July 2002. An identical numerical grid describing the underlying topography is constructed for each model, using a combination of airborne laser altimetry (LiDAR) fused with digital map data, and used to run a benchmark simulation. Two numerical experiments were then conducted to test the response of each model to topographic error and uncertainty over friction parameterisation. While all the models tested produce plausible results, subtle differences between particular groups of codes give considerable insight into both the practice and science of urban hydraulic modelling. In particular, the results show that the terrain data available from modern LiDAR systems are sufficiently accurate and resolved for simulating urban flows, but such data need to be fused with digital map data of building topology and land use to gain maximum benefit from the information contained therein. When such terrain data are available, uncertainty in friction parameters becomes a more dominant factor than topographic error for typical problems. The simulations also show that flows in urban environments are characterised by numerous transitions to supercritical flow and numerical shocks. However, the effects of these are localised and they do not appear to affect overall wave propagation. In contrast, inertia terms are shown to be important in this particular case, but the specific characteristics of the test site may mean that this does not hold more generally.
Resumo:
Techniques for modelling urban microclimates and urban block surfaces temperatures are desired by urban planners and architects for strategic urban designs at the early design stages. This paper introduces a simplified mathematical model for urban simulations (UMsim) including urban surfaces temperatures and microclimates. The nodal network model has been developed by integrating coupled thermal and airflow model. Direct solar radiation, diffuse radiation, reflected radiation, long-wave radiation, heat convection in air and heat transfer in the exterior walls and ground within the complex have been taken into account. The relevant equations have been solved using the finite difference method under the Matlab platform. Comparisons have been conducted between the data produced from the simulation and that from an urban experimental study carried out in a real architectural complex on the campus of Chongqing University, China in July 2005 and January 2006. The results show a satisfactory agreement between the two sets of data. The UMsim can be used to simulate the microclimates, in particular the surface temperatures of urban blocks, therefore it can be used to assess the impact of urban surfaces properties on urban microclimates. The UMsim will be able to produce robust data and images of urban environments for sustainable urban design.
Resumo:
This research explores the relationship between inheritance, access to resources and the intergenerational transmission of poverty among the Serer ethnic group in rural and urban environments in Senegal. In many Sub-Saharan African countries, customary law excludes women from owning and inheriting assets, such as land and property. Yet, assets controlled by women often result in increased investments in the next generation's health, nutrition and schooling and reduce the intergenerational transmission of poverty. Qualitative research with 60 participants in Senegal reveals the important role that land, housing and financial assets may play in building resilience to household shocks and interrupting the intergenerational transmission of poverty. However, the protection afforded by these assets was often dependent on other factors, including human, social and environmental capital. The death of a spouse or parent had major emotional and material impacts on many Serer families. The inheritance and control of assets and resources was strongly differentiated among family members along lines of gender, age and generation. Younger widows and their children were particularly vulnerable to chronic poverty. Although inheritance disputes were rare, the research suggests they are more likely between co-wives in polygamous unions and their children, particularly in urban areas. In addition to experiencing economic and health-related shocks, many interviewees were exposed to a range of climate-related risks and environmental pressures which increased their vulnerability. Family members coped with these shocks and risks by diversifying livelihoods, migrating to urban areas and other regions for work, participating in women's co-operatives and associations and developing supportive social networks with extended family and community members. Policies and practices that may help to alleviate poverty, safeguard women's and young people's inheritance and build resilience to financial, health-related and environmental shocks and risks include: - Social protection measures targeted towards poor widows and orphaned children, such as social and cash transfers to pay for basic needs including food, healthcare and children's schooling. - Micro-finance initiatives and credit and savings schemes, alongside training and capacity-building targeted to women and young people to develop income-generation activities and skills. - Free legal advice, support and advocacy for women and young people to pursue inheritance claims through the legal system. - Raising awareness about women's and children's legal rights and working with government and community and religious leaders to tackle discriminatory inheritance practices and contradictions caused by legal pluralism. - Increasing women's control of land and access to inputs, enhancing their business, organisational, and leadership skills and promoting civic participation in local, regional and national decision-making processes. - Improving access to basic services in rural areas, particularly healthcare, building the quality of education and promoting girls' access to education - Enhancing agricultural production and providing more employment opportunities, apprenticeships and vocational training for young people, particularly in rural areas.
Resumo:
Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020–2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.
Resumo:
The heterogeneous nature of urban environments means that atmospheric research ideally requires a dense network of sensors to adequately resolve the local climate. With recent advances in sensor technology, a number of urban meteorological networks now exist with a range of research or operational objectives. This article reviews and assesses the current status of urban meteorological networks, by examining the fundamental scientific and logistical issues related to these networks. The article concludes by making recommendations for future deployments based on the challenges encountered by existing networks, including the need for better reporting and documentation of network characteristics, standardized approaches and guidelines, along with the need to overcome financial barriers via collaborative relationships in order to establish the long-term urban networks essential for advancing urban climate research. Copyright © 2013 Royal Meteorological Society
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
Cities and global climate change are closely linked: cities are where the bulk of greenhouse gas emissions take place through the consumption of fossil fuels; they are where an increasing proportion of the world’s people live; and they also generate their own climate – commonly characterized by the urban heat island. In this way, understanding the way cities affect the cycling of energy, water, and carbon to create an urban climate is a key element of climate mitigation and adaptation strategies, especially in the context of rising global temperatures and deteriorating air quality in many cities. As climate models resolve finer spatial-scales, they will need to represent those areas in which more than 50% of the world’s population already live to provide climate projections that are of greater use to planning and decision-making. Finally, many of the processes that are instrumental in determining urban climate are the same factors leading to global anthropogenic climate change, namely regional-scale land-use changes; increased energy use; and increased emissions of climatically-relevant atmospheric constituents. Cities are therefore both a case study for understanding, and an agent in mitigating, anthropogenic climate change. This chapter reviews and summarizes the current state of understanding of the physical basis of urban climates, as well as our ability to represent these in models. We argue that addressing the challenges of managing urban environments in a changing climate requires understanding the energy, water, and carbon balances for an urban landscape and, importantly, their interactions and feedbacks, together with their links to human behaviour and controls. We conclude with some suggestions for where further research is needed.
Resumo:
This paper aims to address the characteristics of urban microclimates that affect the building energy performance and implementation of the renewable energy technologies. An experimental campaign was designed to investigate the microclimate parameters including air and surface temperature, direct and diffuse solar irradiation levels on both horizontal and vertical surfaces, wind speed and direction in a dense urban area in London. The outcomes of this research reveal that the climatic parameters are significantly influenced by the attributes of urban textures, which highlight the need for both providing the microclimatic information and using them in buildings design stages. This research provides a valuable set of microclimatic information for a dense urban area in London. According to the outcomes of this research, the feasibility study for implementation of renewable energy technologies and the thermal/ energy performance assessment of buildings need to be conducted using the microclimatic information rather than the meteorological weather data mostly collected from non-urban environments.
Resumo:
The evergreen Quercus ilex L. is one of the most common trees in Italian urban environments and is considered effective in the uptake of particulate and gaseous atmospheric pollutants. However, the few available estimates on O3 and NO2 removal by urban Q. ilex originate from model-based studies (which indicate NO2/O3 removal capacity of Q. ilex) and not from direct measurements of air pollutant concentrations. Thus, in the urban area of Siena (central Italy) we began long-term monitoring of O3/NO2 concentrations using passive samplers at a distance of 1, 5, 10 m from a busy road, under the canopies of Q. ilex and in a nearby open-field. Measurements performed in the period June 2011-October 2013 showed always a greater decrease of NO2 concentrations under the Q. ilex canopy than in the open-field transect. Conversely, a decrease of average O3 concentrations under the tree canopy was found only in autumn after the typical Mediterranean post-summer rainfalls. Our results indicate that interactions between O3/NO2 concentrations and trees in Mediterranean urban ecosystems are affected by temporal variations in climatic conditions. We argue therefore that the direct measurement of atmospheric pollutant concentrations should be chosen to describe local changes of aerial pollution.